Caspases have been strongly implicated to play an essential role in apoptosis. A critical question regarding the role(s) of these proteases is whether selective inhibition of an effector caspase(s) will prevent cell death. We have identified potent and selective non-peptide inhibitors of the effector caspases 3 and 7. The inhibition of apoptosis and maintenance of cell functionality with a caspase 3/7-selective inhibitor is demonstrated for the first time, and suggests that targeting these two caspases alone is sufficient for blocking apoptosis. Furthermore, an x-ray co-crystal structure of the complex between recombinant human caspase 3 and an isatin sulfonamide inhibitor has been solved to 2.8-Å resolution. In contrast to previously reported peptide-based caspase inhibitors, the isatin sulfonamides derive their selectivity for caspases 3 and 7 by interacting primarily with the S 2 subsite, and do not bind in the caspase primary aspartic acid binding pocket (S 1 ). These inhibitors blocked apoptosis in murine bone marrow neutrophils and human chondrocytes. Furthermore, in camptothecin-induced chondrocyte apoptosis, cell functionality as measured by type II collagen promoter activity is maintained, an activity considered essential for cartilage homeostasis. These data suggest that inhibiting chondrocyte cell death with a caspase 3/7-selective inhibitor may provide a novel therapeutic approach for the prevention and treatment of osteoarthritis, or other disease states characterized by excessive apoptosis.
Histone deacetylases (HDACs) represent an expanding family of protein modifying-enzymes that play important roles in cell proliferation, chromosome remodeling, and gene transcription. We have previously shown that recombinant human HDAC8 can be expressed in bacteria and retain its catalytic activity. To further explore the catalytic activity of HDACs, we expressed two additional human class I HDACs, HDAC1 and HDAC3, in baculovirus. Recombinant HDAC1 and HDAC3 fusion proteins remained soluble and catalytically active and were purified to near homogeneity. Interestingly, trichostatin (TSA) was found to be a potent inhibitor for all three HDACs (IC 50 value of ϳ0.1-0.3 M), whereas another HDAC inhibitor MS-27-275 (N-(2-aminophenyl)-4-[N-(pyridin-3-methyloxycarbonyl)-aminomethyl]benzamide) preferentially inhibited HDAC1 (IC 50 value of ϳ0.3 M) versus HDAC3 (IC 50 value of ϳ8 M) and had no inhibitory activity toward HDAC8 (IC 50 value Ͼ100 M). MS-27-275 as well as TSA increased histone H4 acetylation, induced apoptosis in the human colon cancer cell line SW620, and activated the simian virus 40 early promoter. HDAC1 protein was more abundantly expressed in SW620 cells compared with that of HDAC3 and HDAC8. Using purified recombinant HDAC proteins, we identified several novel HDAC inhibitors that preferentially inhibit HDAC1 or HDAC8. These inhibitors displayed distinct properties in inducing histone acetylation and reporter gene expression. These results suggest selective HDAC inhibitors could be identified using recombinantly expressed HDACs and that HDAC1 may be a promising therapeutic target for designing HDAC inhibitors for proliferative diseases such as cancer.
Histone acetylation alters chromatin state by modifying lysines on histone and plays an important role in modulating gene transcription. A dynamic balance of histone acetylation/deacetylation is maintained by histone acetyltransferases and histone deacetylases. Emerging evidence suggests that a family of histone deacetylases may exist to regulate diverse cellular functions, including chromatin structure, gene expression, cell cycle progression, and oncogenesis. We describe here a novel human histone deacetylase, named HDAC8, cloned from human kidney. HDAC8 encodes 377 amino acid residues and shares extensive homology to several known HDACs, in particular a histone deacetylase from Arabidopsis thaliana. Northern blot analyses revealed that HDAC8 expression pattern for HDAC8 is distinct from that for HDAC1 and HDAC3, and expression of HDAC8 mRNA occurs in multiple organs including heart, lung, kidney, and pancreas. HDAC8 mRNA was also observed in several cell lines derived from cancerous tissues. When expressed in HEK293 cells, HDAC8 exhibited deacetylase activity toward acetylated histone, indicating that this protein is a bona fide histone deacetylase. Its histone deacetylase activity was inhibited by trichostatin and other known histone deacetylase inhibitors. Furthermore, active recombinant HDAC8 was expressed and purified from Escherichia coli. When ectopically expressed in cells, HDAC8 was found to be localized to the nucleus. Co-transfection experiments demonstrated that expression of HDAC8 repressed a viral SV40 early promoter activity. These results indicate that HDAC8 is a novel member of the histone deacetylase family, which may play a role in the development of a broad range of tissues and potentially in the etiology of cancer.
Chk1 is a serine-threonine kinase that plays an important role in the DNA damage response, including G 2 /M cell cycle control. UCN-01 (7-hydroxystaurosporine), currently in clinical trials, has recently been shown to be a potent Chk1 inhibitor that abrogates the G 2 /M checkpoint induced by DNA-damaging agents. To understand the structural basis of Chk1 inhibition by UCN-01, we determined the crystal structure of the Chk1 kinase domain in complex with UCN-01. Chk1 structures with staurosporine and its analog SB-218078 were also determined. All three compounds bind in the ATP-binding pocket of Chk1, producing only slight changes in the protein conformation. Selectivity of UCN-01 toward Chk1 over cyclin-dependent kinases can be explained by the presence of a hydroxyl group in the lactam moiety interacting with the ATP-binding pocket. Hydrophobic interactions and hydrogen-bonding interactions were observed in the structures between UCN-01 and the Chk1 kinase domain. The high structural complementarity of these interactions is consistent with the potency and selectivity of UCN-01.
c-Abl kinase activity is regulated by a unique mechanism involving the formation of an autoinhibited conformation in which the N-terminal myristoyl group binds intramolecularly to the myristoyl binding site on the kinase domain and induces the bending of the αI helix that creates a docking surface for the SH2 domain. Here, we report a small-molecule c-Abl activator, DPH, that displays potent enzymatic and cellular activity in stimulating c-Abl activation. Structural analyses indicate that DPH binds to the myristoyl binding site and prevents the formation of the bent conformation of the αI helix through steric hindrance, a mode of action distinct from the previously identified allosteric c-Abl inhibitor, GNF-2, that also binds to the myristoyl binding site. DPH represents the first cell-permeable, small-molecule tool compound for c-Abl activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.