In 2009-2010, the Laser Interferometer Gravitational-wave Observatory (LIGO) operated together with international partners Virgo and GEO600 as a network to search for gravitational waves of astrophysical origin. The sensitivity of these detectors was limited by a combination of noise sources inherent to the instrumental design and its environment, often localized in time or frequency, that couple into the gravitational-wave readout. Here we review the performance of the LIGO instruments during this epoch, the work done to characterize the detectors and their data, and the effect that transient and continuous noise artefacts have on the sensitivity of LIGO to a variety of astrophysical sources.
This paper presents a complete description of Virgo, the French-Italian gravitational wave detector. The detector, built at Cascina, near Pisa (Italy), is a very large Michelson interferometer, with 3 km-long arms.
JINST 7 P03012In this paper, following a presentation of the physics requirements, leading to the specifications for the construction of the detector, a detailed description of all its different elements is given. These include civil engineering infrastructures, a huge ultra-high vacuum (UHV) chamber (about 6000 cubic metres), all of the optical components, including high quality mirrors and their seismic isolating suspensions, all of the electronics required to control the interferometer and for signal detection. The expected performances of these different elements are given, leading to an overall sensitivity curve as a function of the incoming gravitational wave frequency.This description represents the detector as built and used in the first data-taking runs. Improvements in different parts have been and continue to be performed, leading to better sensitivities. These will be detailed in a forthcoming paper.
We describe the present state and future evolution of the Virgo gravitational wave detector, realized by the Virgo Collaboration at the European Gravitational Observatory, in Cascina near Pisa in Italy. We summarize basic principles of the operation and the design features of the Virgo detector. We present the sensitivity evolution due to a series of intermediate upgrades called Virgo+ which is being completed this year and includes new monolithic suspensions. We describe the present scientific potential of the detector. Finally we discuss the plans for the second generation of the detector, called Advanced Virgo, introducing its new features, the expected sensitivity evolution and the scientific potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.