We present results of lithogeochemical, diatomic and palynological studies of sediments from the Tunka-13 well that was drilled in the southeastern part of dry Tunka basin in the Baikal rift zone. At the base of the section, there is an eroded basaltic flow of 16-15 Ma. From lithogeochemical signatures, we identify nine sedimentary units. The seven lower ones (interval 7.2-86.5 m) belong to the Tankhoi formation, the eighth (interval 2.7-6.6 m) to the Anosov formation, the ninth (interval <2.4 m) to the sandy stratum. We determined local sources of clastic material of basaltic and silicic compositions for units 1 and 2, respectively, and remote sources of silicic compositions for the overlaying units. The section shows a change from alluvial facies (units 1-3) through avandelta (unit 4) and lacustrine ones (units 5-7), again to alluvial facies (unit 8) and then to lacustrine-eolian ones (unit 9). Spore and pollen spectra from sediments of units 1-7 are divided into three palynozones (PZ), reflecting the vegetation change in the Late Miocene -Early Pliocene: PZ-1 -coniferous and deciduous forests with a small participation of thermophilic broadleaved species in moderately warm, humid climatic conditions; PZ-2 -enhancing the role of hemlock and more diverse thermophilic deciduous rocks in more humid and warm conditions; PZ-3 -a gradual reduction in the number of hemlock and other dark coniferous species, removing broadleaved species by birch and alder, growing grassy communities in wetlands due to climate cooling. We identified layers of lacustrine facies by occurrence of fossil diatoms that are absent in the layers of the alluvial and avandelta facies. In lacustrine sediments, we distinguish four diatom zones: DZ-1 denotes a relatively deep Late Miocene paleolake, marked by planktonic species, DZ-2, DZ-3 and DZ-4 -a shallow Early Pliocene lake with a developed littoral zone and short transgression. The Late-Miocene paleolake transgression, indicated by changing facies, is associated with structural reorganization, accompanied by volcanic extinction in the Tunka valley about 9-8 Ma, and the Early Pliocene short transgression with a new reorganization, reflected in volcanic rejuvenation about 4.0 Ma.
A high abundance of planktonic microalgae is typically thought to be related to their ‘bloom’, that is, to active population growth. Diatom blooms in the photic zone of Lake Baikal generally occur during hydrological spring (April–June); when the summer arrives and the surface water temperature increases, diatoms are replaced by other microalgae. In July 2019, we found a concentration of the diatom Fragilaria radians at a station in South Baikal that was extremely high for that season. This species generally blooms in spring, but in spring (May) of 2019, this alga was nearly absent from the phytoplankton population. Microscopic analysis of the sample taken in July 2019 revealed that the cells were in a dormant stage. The species composition of microalgae in phytoplankton samples from May 2018 and July 2019 was similar. According to the temperature profile analysis, a summer upwelling event from a depth of ca. 100 m occurred in 2019. We hypothesised that this event caused the resuspension of microalgae, including Fragilaria radians, which were deposited on the slopes of the lake in 2018. Hence, the high abundance is not always a ‘bloom’ or an active growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.