Neurotrophins, acting through their high-affinity signal-transducing Trk receptors, are involved in the development, differentiation and maintenance of discrete neuron populations in the higher vertebrates. Furthermore, the presence of Trk receptors in some non-neuronal tissues, including the endocrine cells of the gut, could indicate an involvement of neurotrophins also in these tissues. Recently, neurotrophins and neurotrophin receptor proteins have been identified in the lower vertebrates and invertebrates, whose amino acid sequences are highly homologous with those found in mammals. The present study investigates the occurrence and distribution of Trk-like proteins in the neurons and gut endocrine cells in five species of teleost. Single and double immunolabeling was carried out on fresh and paraffin-embedded tissue using commercially available antibodies against sequences of the intracytoplasmic domain of the mammalian Trk. Western-blot analysis, carried out on samples of stomach and intestine of bass, identified proteins whose estimated molecular masses (140 kDa, 145 kDa and 143-145 kDa) were similar to those reported for full-length TrkA, TrkB and TrkC in the higher vertebrates. TrkA-like immunoreactivity was found in the enteric nervous system plexuses of three fish species. Trk-like immunoreactivity was observed in the endocrine cells as follows: sparse TrkA-like immunoreactive endocrine cells were detected only in the intestine: TrkB-like immunoreactive cells were detected only in the stomach; and TrkC-like immunoreactive cells were found both in the intestine of the carp and in the stomach of the bass, where they also showed TrkB-like immunoreactivity. These findings confirm the occurrence and distribution of Trk-like proteins in teleosts. These proteins are closely related to the Trk neurotrophin receptors of mammals. The functional significance of Trk-like proteins in both neuronal and non-neuronal cells of teleosts is still not clear.
BDNF (brain-derived neurotrophic factor) is a member of the neurotrophin family and it is implicated in regulating brain development and function. The BDNF gene organization and coding sequence are conserved in all vertebrates. The present survey was conducted in a teleost fish, Nothobranchius furzeri, because it is an emerging model of aging studies due to its short lifespan and shows the high rate of adult neurogenesis typical of anamniotes. The present survey reports: 1) the identification and characterization of the cDNA fragment encoding BDNF protein, and 2) the localization of BDNF in the whole brain. BDNF mRNA expression was assessed by in situ hybridization, by employing an antisense RNA probe; BDNF protein was detected by employing a sensitive immunohistochemical technique, along with highly specific affinity-purified antibodies to BDNF. Both BDNF mRNA and protein were detected in neurons and glial cells of all regions of the brain of N. furzeri. Interestingly, BDNF was localized also in brain areas involved in adult neurogenic activities, suggesting a specific role for this neurotrophic factor in controlling cell proliferation. These results provide baseline information for future studies concerning BDNF involvement in the aging processes of the teleost brain.
Neurotrophins (NTs) and their specific Trk-receptors are key molecules involved in the regulation of survival, proliferation, and differentiation of central nervous system during development and adulthood in vertebrates. In the present survey, we studied the expression and localization of neurotrophins and their Trk-receptors in the cerebellum of teleost fish Danio rerio (zebrafish). Teleostean cerebellum is composed of a valvula, body and vestibulolateral lobe. Valvula and body show the same three-layer structure as cerebellar cortex in mammals. The expression of NTs and Trk-receptors in the whole brain of zebrafish has been studied by Western blotting analysis. By immunohistochemistry, the localization of NTs has been observed mainly in Purkinje cells; TrkA and TrkB-receptors in cells and fibers of granular and molecular layers. TrkC was faintly detected. The occurrence of NTs and Trk-receptors suggests that they could have a synergistic action in the cerebellum of zebrafish. J. Morphol. 277:725-736, 2016. © 2016 Wiley Periodicals, Inc.
Orexin A (OXA) and neuropeptide Y (NPY) are two hypothalamic neuropeptides involved in the regulation of feeding behavior and food intake in all vertebrates. Accumulating evidences document that they undergo age-related modifications, with consequences on metabolism, sleep/wake disorders and progression of neurodegenerations. The present study addressed the age related changes in expression and distribution of orexin A (its precursor is also known as hypocretin-HCRT) and NPY, and their regulation by food intake in the short-lived vertebrate model Nothobranchius furzeri. Our experiments, conducted on male specimens, show that: (a) HCRT and OXA and NPY mRNA and protein are localized in neurons of diencephalon and optic tectum, as well as in numerous fibers projecting through the entire neuroaxis, and are colocalized in specific nuclei; (b) in course of aging, HCRT and NPY expressing neurons are localized also in telencephalon and rhombencephalon; (c) HCRT expressing neurons increased slightly in the diencephalic area of old animals and in fasted animals, whereas NPY increased sharply; (d) central HCRT levels are not regulated neither in course of aging nor by food intake; and (e) central NPY levels are augmented in course of aging, and regulated by food intake only in young. These findings represent a great novelty in the study of central orexinergic and NPY-ergic systems in vertebrates', demonstrating an uncommon and unprecedented described regulation of these two orexigenic neuropeptides. K E Y W O R D S aging, food intake, HCRT, hypothalamus, NPY, RRID:AB_1566510, RRID:AB_653610, RRID: AB_91545, teleost fish Abbreviations: A, anterior thalamic nucleus; Cans, ansulate commissure; CI, interpeduncular body; Cmin, minor commissure; CN, cortical nucleus; CP, central posterior thalamic nucleus; CPN, central pretectal nucleus; Cpost, posterior commissure; DAO, dorsal accessory optic nuclei; Dc, central zone of dorsal telencephalon; DIL, inferior lobe of hypothalamus; Dld, dorso-lateral zone of dorsal telencephalon; Dll, latero-lateral zone of dorsal telencephalon; Dlv, ventro-lateral zone of dorsal telenceph-
Neurotrophins are involved in the development and maintenance of some neuronal populations, acting through tyrosine protein kinase (Trk) receptors, TrkA, TrkB and TrkC. In addition, recent studies have demonstrated the occurrence of Trk receptors in a wide variety of adult and embryonic non-neuronal tissues in vertebrates, including kidney. Nevertheless no data are available on Trk proteins distribution in teleost kidney. The present study, by using an immunoperoxidase technique, analyses Trk receptor protein distribution in the kidney of three species of freshwater and saltwater teleost. TrkA-like immunoreactivity was the only one detected in all examined species, while TrkB-like immunoreactivity was completely absent and TrkC-like immunoreactivity was detected only in goldfish. The TrkA immunoreactive cells were mainly localised in the collecting duct system, as this system was the only one to also display TrkC. Such data could provide new clues to Trk in fish and aid assessment of the role of Trk protein receptors during vertebrate evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.