We report on work to increase the number of well-measured Type Ia supernovae (SNe Ia) at high redshifts. Light curves, including high signal-to-noise HST data, and spectra of six SNe Ia that were discovered during 2001 are presented. Additionally, for the two SNe with z > 1, we present groundbased J-band photometry from Gemini and the VLT. These are among the most distant SNe Ia for which ground based near-IR observations have been obtained. We add these six SNe Ia together with other data sets that have recently become available in the literature to the Union compilation (Kowalski et al. 2008). We have made a number of refinements to the Union analysis chain, the most important ones being the refitting of all light curves with the SALT2 fitter and an improved handling of systematic errors. We call this new compilation, consisting of 557 supernovae, the Union2 compilation. The flat concordance ΛCDM model remains an excellent fit to the Union2 data with the best fit constant equation of state parameter w = −0.997 +0.050 −0.054 (stat)+0.077 −0.082 (stat + sys together) for a flat universe, or w = −1.035 +0.055 −0.059 (stat)+0.093 −0.097 (stat + sys together) with curvature. We also present improved constraints on w(z). While no significant change in w with redshift is detected, there is still considerable room for evolution in w. The strength of the constraints depend strongly on redshift. In particular, at z 1, the existence and nature of dark energy are only weakly constrained by the data.
We present ACS, NICMOS, and Keck AO-assisted photometry of 20 Type Ia supernovae (SNe Ia) from the HST Cluster Supernova Survey. The SNe Ia were discovered over the redshift interval 0.623 < z < 1.415. Fourteen of these SNe Ia pass our strict selection cuts and are used in combination with the world's sample of SNe Ia to derive the best current constraints on dark energy. Ten of our new SNe Ia are beyond redshift z = 1, thereby nearly doubling the statistical weight of HST-discovered SNe Ia beyond this redshift. Our detailed analysis corrects for the recently identified correlation between SN Ia luminosity and host galaxy mass and corrects the NICMOS zeropoint at the count rates appropriate for very distant SNe Ia. Adding these supernovae improves the best combined constraint on dark energy density, ρ DE (z), at redshifts 1.0 < z < 1.6 by 18% (including systematic errors). For a flat ΛCDM universe, we find Ω Λ = 0.729 +0.014 −0.014 (68% CL including systematic errors). For a flat wCDM model, we measure a constant dark energy equation-of-state parameter w = −1.013 +0.068 −0.073 (68% CL). Curvature is constrained to ∼ 0.7% in the owCDM model and to ∼ 2% in a model in which dark energy is allowed to vary with parameters w 0 and w a . Tightening further the constraints on the time evolution of dark energy will require several improvements, including high-quality multi-passband photometry of a sample of several dozen z > 1 SNe Ia. We describe how such a sample could be efficiently obtained by targeting cluster fields with WFC3 on HST.The updated supernova Union2.1 compilation of 580 SNe is available at http://supernova.lbl.gov/Union ⋆ is less than the mass threshold. We begin by noting that.We can then integrate this probability over all true host masses less than the threshold:⋆ )P (m true ⋆ ) up to a normalization constant found by requiring the integral to be unity when integrating over all possible true masses. P (m true ⋆ ) is estimated from the observed distribution for each type of survey. The SNLS (Sullivan et al. 2010) and SDSS (Lampeitl et al. 2010) host masses were assumed to be representative of untargeted surveys, while the mass distribution in Kelly et al. (2010) was assumed typical of nearby targeted surveys. As these distributions are approximately log-normal, we use this model for P (m true ⋆) using the mean and RMS from the log of the host masses from these surveys (with the average measurement errors subtracted in quadrature), giving log 10 P (m true ⋆ ) = N (µ = 9.88, σ 2 = 0.92 2 ) for untargeted surveys and log 10 P (m true ⋆ ) = N (10.75, 0.66 2 ) for targeted surveys. When host mass measurements are available, P (m obs ⋆ |m true ⋆ ) is also modeled as a log-normal; when no measurement is available, a flat distribution is used.For a supernova from an untargeted survey with no host mass measurement (including supernovae presented in this paper which are not in a cluster), P (m trueis the integral of P (m true ⋆ ) up to the threshold mass: 0.55. Similarly, nearby supernovae from targeted surveys w...
We present observations of SCP 06F6, an unusual optical transient discovered during the Hubble Space Telescope Cluster Supernova Survey. The transient brightened over a period of ∼100 days, reached a peak magnitude of ∼21.0 in both i 775 and z 850 , and then declined over a similar timescale. There is no host galaxy or progenitor star detected at the location of the transient to a 3σ upper limit of i 775 ≥ 26.4 and z 850 ≥ 26.1, giving a corresponding lower limit on the flux increase of a factor of ∼120. Multiple spectra show five broad absorption bands between 4100Å and 6500Å and a mostly featureless continuum longward of 6500Å. The shape of the lightcurve is inconsistent with microlensing. The transient's spectrum, in addition to being inconsistent with all known supernova types, is not matched to any spectrum in the Sloan Digital Sky Survey (SDSS) database. We suggest that the transient may be one of a new class.
Traditionally, galaxy clusters have been expected to retain all the material accreted since their formation epoch. For this reason, their matter content should be representative of the Universe as a whole, and thus their baryon fraction should be close to the Universal baryon fraction Ω b /Ω m . We make use of the sample of the 100 brightest galaxy clusters discovered in the XXL Survey to investigate the fraction of baryons in the form of hot gas and stars in the cluster population. Since it spans a wide range of mass (10 13 −10 15 M ) and redshift (0.05−1.1) and benefits from a large set of multiwavelength data, the XXL-100-GC sample is ideal for measuring the global baryon budget of massive halos. We measure the gas masses of the detected halos and use a mass-temperature relation directly calibrated using weak-lensing measurements for a subset of XXL clusters to estimate the halo mass. We find that the weak-lensing calibrated gas fraction of XXL-100-GC clusters is substantially lower than was found in previous studies using hydrostatic masses. Our best-fit relation between gas fraction and mass reads f gas,500 = 0.055 +0.007 −0.006 M 500 /10 14 M 0.21 +0.11 −0.10 . The baryon budget of galaxy clusters therefore falls short of the Universal baryon fraction by about a factor of two at r 500,MT . Our measurements require a hydrostatic bias 1 − b = M X /M WL = 0.72 +0.08 −0.07 to match the gas fraction obtained using lensing and hydrostatic equilibrium, which holds independently of the instrument considered. Comparing our gas fraction measurements with the expectations from numerical simulations, we find that our results favour an extreme feedback scheme in which a significant fraction of the baryons are expelled from the cores of halos. This model is, however, in contrast with the thermodynamical properties of observed halos, which might suggest that weak-lensing masses are overestimated. In light of these results, we note that a mass bias 1 − b = 0.58 as required to reconcile Planck cosmic microwave background and cluster counts should translate into an even lower baryon fraction, which poses a major challenge to our current understanding of galaxy clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.