Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confi ned in toroidal tokamak devices requires the development of effi cient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing signifi cant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors.
The use of ECRH has been investigated as a promising technique to avoid or postpone disruptions in dedicated experiments in FTU and ASDEX Upgrade. Disruptions have been produced by injecting Mo through laser blow-off (FTU) or by puffing deuterium gas above the Greenwald limit (FTU and ASDEX Upgrade). The toroidal magnetic field is kept fixed and the ECRH launching mirrors are steered before every discharge in order to change the deposition radius. The loop voltage signal is used as disruption precursor to trigger the ECRH power before the plasma current quench. In the FTU experiments (I p =0.35-0.5 MA, B t =5.3 T, P ECRH =0.4-1.2 MW) it is found that the application of ECRH modifies the current quench starting time depending on the power deposition location. A scan in deposition location has shown that the direct heating of one of the magnetic islands produced by magnetohydrodynamic (MHD) modes (either m/n=3/2, 2/1 or 3/1) prevents its further growth and also produces the stabilization of the other coupled modes and current quench delay or avoidance. Disruption avoidance and complete discharge recovery is obtained when the ECRH power is applied on rational surfaces. The modes involved in the disruption are found to be tearing modes stabilized by a strong local ECRH heating. The Rutherford equation has been used to reproduce the evolution of the MHD modes. The minimum absorbed power value found for disruption avoidance is 0.4 MW at 0.5 MA with deposition on the q=2 surface. In the similar set of experiments carried out in ASDEX Upgrade L-mode plasmas (I p =0.6 MA, B t =2.5 T, P ECRH = 0.6 MW ~ P OHM) the injection of ECRH close to q=2 significantly delays the 2/1 onset and prolongs the duration of the discharge: during this phase the density continues to increase. No 2/1 onset delay is observed when the injected power is reduced to 0.35 MW.
Disruption avoidance by stabilization of MHD modes through injection of ECRH at different radial locations is reported. Disruptions have been induced in the FTU (Frascati Tokamak Upgrade) deuterium plasmas by Mo injection or by exceeding the density limit (D gas puffing). ECRH is triggered when the V(loop) exceeds a preset threshold value. Coupling between MHD modes (m/n=3/2, 2/1, 3/1) occurs before disruption. Direct heating of one coupled mode is sufficient to avoid disruptions, while heating close to the mode leads to disruption delay. These results could be relevant for the International Thermonuclear Experimental Reactor tokamak operation.
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
One of the main problems in tokamak fusion devices concerns the capability to operate at a high plasma density, which is observed to be limited by the appearance of catastrophic events causing loss of plasma confinement. The commonly used empirical scaling law for the density limit is the Greenwald limit, predicting that the maximum achievable line-averaged density along a central chord depends only on the average plasma current density. However, the Greenwald density limit has been exceeded in tokamak experiments in the case of peaked density profiles, indicating that the edge density is the real parameter responsible for the density limit. Recently, it has been shown on the Frascati Tokamak Upgrade (FTU) that the Greenwald density limit is exceeded in gas-fuelled discharges with a high value of the edge safety factor. In order to understand this behaviour, dedicated density limit experiments were performed on FTU, in which the high density domain was explored in a wide range of values of plasma current (Ip = 500–900 kA) and toroidal magnetic field (BT = 4–8 T). These experiments confirm the edge nature of the density limit, as a Greenwald-like scaling holds for the maximum achievable line-averaged density along a peripheral chord passing at r/a ≃ 4/5. On the other hand, the maximum achievable line-averaged density along a central chord does not depend on the average plasma current density and essentially depends on the toroidal magnetic field only. This behaviour is explained in terms of density profile peaking in the high density domain, with a peaking factor at the disruption depending on the edge safety factor. The possibility that the MARFE (multifaced asymmetric radiation from the edge) phenomenon is the cause of the peaking has been considered, with the MARFE believed to form a channel for the penetration of the neutral particles into deeper layers of the plasma. Finally, the magnetohydrodynamic (MHD) analysis has shown that also the central line-averaged density at the onset of the MHD activity depends only on the toroidal magnetic field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.