Malignant hyperthermia (MH) is a pharmacogenetic disorder of skeletal muscle that is triggered in genetically predisposed individuals by common anesthetics and muscle relaxants. The ryanodine receptor (RYR1) is mutated in a number of MH pedigrees, some members of which also have central core disease (CCD), an inherited myopathy closely associated with MH. Mutation screening of 6 kb of the RYR1 gene has identified four adjacent novel mutations, C6487T, G6488A, G6502A, and C6617T, which result in the amino acid alterations Arg2163Cys, Arg2163His, Val2168Met, and Thr2206Met, respectively. Collectively, these mutations account for 11% of MH cases and identify the gene segment 6400-6700 as a mutation hot spot. Correlation analysis of the in vitro contracture-test data available for pedigrees bearing these and other RYR1 mutations showed an exceptionally good correlation between caffeine threshold and tension values, whereas no correlation was observed between halothane threshold and tension values. This finding has important ramifications for assignment of the MH-susceptible phenotype, in genotyping studies, and indicates that assessment of recombinant individuals on the basis of caffeine response is justified, whereas assessment on the basis of halothane response may be problematic. Interestingly, the data suggest a link between the caffeine threshold and tension values and the MH/CCD phenotype.
Malignant hyperthermia (MH) is a condition that manifests in susceptible individuals only on exposure to certain anaesthetic agents. Although genetically heterogeneous, mutations in the RYR1 gene (19q13.1) are associated with the majority of reported MH cases. Guidelines for the genetic diagnosis for MH susceptibility have recently been introduced by the European MH Group (EMHG). These are designed to supplement the muscle biopsy testing procedure, the in vitro contracture test (IVCT), which has been the only means of patient screening for the last 30 years and which remains the method for definitive diagnosis in suspected probands. Discordance observed in some families between IVCT phenotype and susceptibility locus genotype could limit the confidence in genetic diagnosis. We have therefore assessed the prevalence of 15 RYR1 mutations currently used in the genetic diagnosis of MH in a sample of over 500 unrelated European MH susceptible individuals and have recorded the frequency of RYR1 genotype/IVCT phenotype discordance. RYR1 mutations were detected in up to B30% of families investigated. Phenotype/genotype discordance in a single individual was observed in 10 out of 196 mutation-positive
Congenital myopathies are genetically and clinically heterogeneous conditions causing severe muscle weakness, and mutations in the ryanodine receptor gene (RYR1) represent the most frequent cause of these conditions. A common feature of diseases caused by recessive RYR1 mutations is a decrease of ryanodine receptor 1 protein content in muscle. The aim of the present investigation was to gain mechanistic insight into the causes of this reduced ryanodine receptor 1. We found that muscle biopsies of patients with recessive RYR1 mutations exhibit decreased expression of muscle-specific microRNAs, increased DNA methylation and increased expression of class II histone deacetylases. Transgenic mouse muscle fibres over-expressing HDAC-4/HDAC-5 exhibited decreased expression of RYR1 and of muscle-specific miRNAs, whereas acute knock-down of RYR1 in mouse muscle fibres by siRNA caused up-regulation of HDAC-4/HDAC-5. Intriguingly, increased class II HDAC expression and decreased ryanodine receptor protein and miRNAs expression were also observed in muscles of patients with nemaline myopathy, another congenital neuromuscular disorder. Our results indicate that a common pathophysiological pathway caused by epigenetic changes is activated in some forms of congenital neuromuscular disorders.
Malignant hyperthermia susceptibility (MHS) is an autosomal dominant disorder of skeletal muscle which manifests as a potentially fatal hypermetabolic crisis triggered by commonly used anaesthetic agents. The demonstration of genetic heterogeneity in MHS prompted the investigation of the roles played by calcium regulatory proteins other than the ryanodine receptor (RYR1), which is known to be linked to MHS in fewer than half of the European MHS families studied to date. Previously, we have excluded the genes encoding the skeletal muscle L-type voltage-dependent calcium channel alpha 1-, beta 1- and gamma-subunits as candidates for MHS. In this report, we describe the cloning and partial DNA sequence analysis of the gene encoding the alpha 2/delta-subunits, CACNL2A, and its localization on the proximal long arm of chromosome 7q. A new dinucleotide repeat marker close to CACNL2A was identified at the D7S849 locus and tested for linkage in six MHS families. D7S849 and flanking genetic markers were found to co-segregate with the MHS locus through 11 meioses in one, three-generation family. These results suggest that mutations in or near CACNL2A may be involved in some forms of this heterogeneous disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.