On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∼ 1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40 − 8 + 8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 M ⊙ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∼ 40 Mpc ) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∼10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∼ 9 and ∼ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.
Over the past five years evidence has mounted that long-duration (> 2 s) γ-ray bursts (GRBs) the most brilliant of all astronomical explosionssignal the collapse of massive stars in our Universe. This evidence was originally based on the probable association of one unusual GRB with a supernova 1 , but now includes the association of GRBs with regions of massive star formation in distant galaxies 2,3 , the appearance of supernova-like 'bumps' in the optical afterglow light curves of several bursts 4-6 and lines of freshly synthesized elements in the spectra of a few X-ray afterglows 7 . These observations support, but do not yet conclusively demonstrate, the idea that long-duration GRBs are associated with the deaths of massive stars, presumably arising from core collapse. Here we report evidence that
X-shooter is the first 2nd generation instrument of the ESO Very Large Telescope (VLT). It is a very efficient, single-target, intermediate-resolution spectrograph that was installed at the Cassegrain focus of UT2 in 2009. The instrument covers, in a single exposure, the spectral range from 300 to 2500 nm. It is designed to maximize the sensitivity in this spectral range through dichroic splitting in three arms with optimized optics, coatings, dispersive elements and detectors. It operates at intermediate spectral resolution (R ∼ 4000−17 000, depending on wavelength and slit width) with fixed échelle spectral format (prism cross-dispersers) in the three arms. It includes a 1.8 × 4 integral field unit as an alternative to the 11 long slits. A dedicated data reduction package delivers fully calibrated two-dimensional and extracted spectra over the full wavelength range. We describe the main characteristics of the instrument and present its performance as measured during commissioning, science verification and the first months of science operations.
We characterize the binary population in the young and nearby OB association Scorpius OB2 (Sco OB2) using available observations of visual, spectroscopic, and astrometric binaries with intermediate-mass primaries. We take into account observational biases by comparing the observations with simulated observations of model associations. The available data indicate a large binary fraction (>70% with 3σ confidence), with a large probability that all intermediate mass stars in Sco OB2 are part of a binary system. The binary systems have a mass ratio distribution of the form f q (q) ∝ q γq , with γ q ≈ −0.4. Sco OB2 has a semi-major axis distribution of the form f a (a) ∝ a γa with γ a ≈ −1.0 (Öpik's law), in the range 5 R < ∼ a < ∼ 5 × 10 6 R . The log-normal period distribution of Duquennoy & Mayor (1991) results in too few spectroscopic binaries, even if the model binary fraction is 100%. Sco OB2 is a young association with a low stellar density; its current population is expected to be very similar to the primordial population. The fact that practically all stars in Sco OB2 are part of a binary (or multiple) system demonstrates that multiplicity is a fundamental factor in the star formation process, at least for intermediate mass stars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.