Na,K-ATPase plays a crucial role in cellular ion homeostasis and is the pharmacological receptor for digitalis in man. Nine different human Na,K-ATPase isozymes, composed of 3 ␣ and  isoforms, were expressed in Xenopus oocytes and were analyzed for their transport and pharmacological properties. According to ouabain binding and K ؉ -activated pump current measurements, all human isozymes are functional but differ in their turnover rates depending on the ␣ isoform. On the other hand, variations in external K ؉ activation are determined by a cooperative interaction mechanism between ␣ and  isoforms with ␣2-2 complexes having the lowest apparent K ؉ affinity. ␣ Isoforms influence the apparent internal Na ؉ affinity in the order ␣1 > ␣2 > ␣3 and the voltage dependence in the order ␣2 > ␣1 > ␣3. All human Na,K-ATPase isozymes have a similar, high affinity for ouabain. However, ␣2- isozymes exhibit more rapid ouabain association as well as dissociation rate constants than ␣1- and ␣3- isozymes. Finally, isoformspecific differences exist in the K ؉ /ouabain antagonism which may protect ␣1 but not ␣2 or ␣3 from digitalis inhibition at physiological K ؉ levels. In conclusion, our study reveals several new functional characteristics of human Na,K-ATPase isozymes which help to better understand their role in ion homeostasis in different tissues and in digitalis action and toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.