We report the results of a search for νe appearance in a νµ beam in the MINOS long-baseline neutrino experiment. With an improved analysis and an increased exposure of 8.2 × 10 20 protons on the NuMI target at Fermilab, we find that 2 sin 2 (θ23) sin 2 (2θ13) < 0.12 (0.20) at 90% confidence level for δ=0 and the normal (inverted) neutrino mass hierarchy, with a best fit of 2 sin 2 (θ23) sin 2 (2θ13) = 0.041−0.031 (0.079−0.053 ). The θ13=0 hypothesis is disfavored by the MINOS data at the 89% confidence level.PACS numbers: 14.60. Pq, 14.60.Lm, arXiv:1108.0015v1 [hep-ex] 29 Jul 2011 2 It has been experimentally established that neutrinos undergo flavor change as they propagate [1][2][3][4][5][6][7]. This phenomenon is well-described by three-flavor neutrino oscillations, characterized by the spectrum of neutrino masses together with the elements of the PMNS mixing matrix [8]. This matrix is often parametrized by three Euler angles θ ij and a CP-violating phase δ. While θ 12 and θ 23 are known to be large [1,4,6], θ 13 appears to be relatively small [9][10][11][12][13], with the tightest limits so far coming from the CHOOZ [10] and MINOS [12] experiments. The T2K collaboration has recently reported indications of a nonzero value for θ 13 at the 2.5σ confidence level (C.L.) [14]. This letter reports new θ 13 constraints from the MINOS experiment, using an increased data set and significant improvements to the analysis.MINOS is a two-detector long-baseline neutrino oscillation experiment situated along the NuMI neutrino beamline [15]. The 0.98-kton Near Detector (ND) is located on-site at Fermilab, 1.04 km downstream of the NuMI target. The 5.4-kton Far Detector (FD) is located 735 km downstream in the Soudan Underground Laboratory. The two detectors have nearly identical designs, each consisting of alternating layers of steel (2.54 cm thick) and plastic scintillator (1 cm). The scintillator layers are constructed from optically isolated, 4.1 cm wide strips that serve as the active elements of the detectors. The strips are read out via optical fibers and multi-anode photomultiplier tubes. Details can be found in Ref. [16].The data used in this analysis come from an exposure of 8.2×1020 protons on the NuMI target. The corresponding neutrino events in the ND have an energy spectrum that peaks at 3 GeV and a flavor composition of 91.7% ν µ , 7.0% ν µ , and 1.3% ν e +ν e , as estimated by beamline and detector Monte Carlo (MC) simulations, with additional constraints from MINOS ND data and external measurements [6,17]. The two-detector arrangement and the relatively small intrinsic ν e component make this analysis rather insensitive to beam uncertainties. Neutrino-nucleus and final-state interactions are simulated using NEUGEN3 [18], and particle propagation and detector response are simulated with GEANT3 [19].MINOS is sensitive to θ 13 through ν µ → ν e oscillations. To leading order, the probability for this oscillation mode is given bywhere ∆m 2 32 (in units of eV 2 ) and θ 23 are the dominant atmospheric oscillation...
This Letter reports new results from the MINOS experiment based on a two-year exposure to muon neutrinos from the Fermilab NuMI beam. Our data are consistent with quantum-mechanical oscillations of neutrino flavor with mass splitting |Deltam2| = (2.43+/-0.13) x 10(-3) eV2 (68% C.L.) and mixing angle sin2(2theta) > 0.90 (90% C.L.). Our data disfavor two alternative explanations for the disappearance of neutrinos in flight: namely, neutrino decays into lighter particles and quantum decoherence of neutrinos, at the 3.7 and 5.7 standard-deviation levels, respectively.
Measurements of neutrino oscillations using the disappearance of muon neutrinos from the Fermilab NuMI neutrino beam as observed by the two MINOS detectors are reported. New analysis methods have been applied to an enlarged data sample from an exposure of 7.25×10(20) protons on target. A fit to neutrino oscillations yields values of |Δm(2)|=(2.32(-0.08)(+0.12))×10(-3) eV(2) for the atmospheric mass splitting and sin(2)(2θ)>0.90 (90% C.L.) for the mixing angle. Pure neutrino decay and quantum decoherence hypotheses are excluded at 7 and 9 standard deviations, respectively.
This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI longterm performance, are also discussed.
10 ÿ3 eV 2 =c 4 and sin 2 2 > 0:87 at 68% confidence level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.