The newly commissioned Orion laser system has been used to study dense plasmas created by a combination of short pulse laser heating and compression by laser driven shocks. Thus the plasma density was systematically varied between 1 and 10 g/cc by using aluminum samples buried in plastic foils or diamond sheets. The aluminum was heated to electron temperatures between 500 and 700 eV allowing the plasma conditions to be diagnosed by K-shell emission spectroscopy. The K-shell spectra show the effect of the ionization potential depression as a function of density. The data are compared to simulated spectra which account for the change in the ionization potential by the commonly used Stewart and Pyatt prescription and an alternative due to Ecker and Kröll suggested by recent x-ray free-electron laser experiments. The experimental data are in closer agreement with simulations using the model of Stewart and Pyatt.
We present the geoBoundaries Global Administrative Database (geoBoundaries): an online, open license resource of the geographic boundaries of political administrative divisions (i.e., state, county). Contrasted to other resources geoBoundaries (1) provides detailed information on the legal open license for every boundary in the repository, and (2) focuses on provisioning highly precise boundary data to support accurate, replicable scientific inquiry. Further, all data is released in a structured form, allowing for the integration of geoBoundaries with large-scale computational workflows. Our database has records for every country around the world, with up to 5 levels of administrative hierarchy. The database is accessible at http://www.geoboundaries.org, and a static version is archived on the Harvard Dataverse.
This paper presents experimental scalings of the electrons and positrons produced by intense laser-target interactions at relativistic laser intensities (1018–1020 W cm−2). The data were acquired from three short-pulse laser facilities with laser energies ranging from 80 to 1500 J. We found a non-linear (≈EL2) scaling of positron yield [Chen et al., Phys. Rev. Lett. 114, 215001 (2015)] and a linear scaling of electron yield with the laser energy. These scalings are explained by theoretical and numerical analyses. Positron acceleration by the target sheath field is confirmed by the positron energy spectrum, which has a pronounced peak at energies near the sheath potential, as determined by the observed maximum energies of accelerated protons. The parameters of laser-produced electron-positron jets are summarized together with the theoretical energy scaling. The measured energy-squared scaling of relativistic electron-positron jets indicates the possibility to create an astrophysically relevant experimental platform with such jets using multi-kilojoule high intensity lasers currently under construction.
The shifts of the 1s3p 1 P 1 → 1s 2 1 S 0 He-β transition of Cl 15+ were measured in hot (≥ 600 eV), dense (1-2 g/cc) plasmas generated by a 66-151 J short-pulse laser beam at the Orion laser facility. The sub-picosecond laser beam irradiated optically thin, KCl microdot targets buried in layers of plastic. The measured red shifts ranged from 4.8 ± 1.1 eV for unshocked to 5.9 ± 1.2 eV for shocked targets. These values are significantly smaller than recent predictions from a self-consistent field ion-sphere model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.