With the present study, the first evidence is provided that the increase of CD4+CD25 high T cells and FoxP3 transcripts is associated with operational tolerance in liver transplanted patients during IS withdrawal.
Sepsis is characterized by a systemic inflammatory response followed by immunosuppression of the host. Metabolic defects and mitochondrial failure are common in immunocompromised patients with sepsis. The NLRP3 inflammasome is important for establishing an inflammatory response after activation by the purinergic P2X7 receptor. Here, we study a cohort of individuals with intra-abdominal origin sepsis and show that patient monocytes have impaired NLRP3 activation by the P2X7 receptor. Furthermore, most sepsis-related deaths are among patients whose NLRP3 activation is profoundly altered. In monocytes from sepsis patients, the P2X7 receptor is associated with mitochondrial dysfunction. Furthermore, activation of the P2X7 receptor results in mitochondrial damage, which in turn inhibits NLRP3 activation by HIF-1α. We show that mortality increases in a mouse model of sepsis when the P2X7 receptor is activated in vivo. These data reveal a molecular mechanism initiated by the P2X7 receptor that contributes to NLRP3 impairment during infection.
SummaryImmune cells are equipped with a number of receptors that recognize sterile injury and pathogens. We find that host immune cells release ATP as an inflammatory signal in response to allogeneic transplantation. ATP then acts via a feedback mechanism on the P2X7 channel to activate the NLRP3 inflammasome and subsequently process and release interleukin (IL)-18. This process is a necessary stage in the deleterious Th1 response against allotransplantation via interferon-γ production. Lack of IL-18 resulted in a decrease in graft-infiltrating CD8 cells but an increase in regulatory T cells. In human liver transplant patients undergoing progressive immunosuppressive drug withdrawal, we found that patients experiencing acute rejection had higher levels of the P2X7 receptor in circulating inflammatory monocytes compared to tolerant patients. These data suggest that the pharmacological inhibition of the P2X7 receptor or the NLRP3 inflammasome will aid in inducing transplant tolerance without complete immunoparalysis.
Tumor necrosis factor (TNF)-α is a major pro-inflammatory cytokine produced in response to toll-like receptor stimulation. TNF-α release is controlled by the activity of TNF-α converting enzyme (TACE) that cut membrane-bound TNF-α to shed its ectodomain as a soluble cytokine. The purinergic receptor P2X ligand-gated ion channel 7 (P2X7) is activated in response to elevated concentrations of extracellular ATP and induces different pro-inflammatory pathways in macrophages to establish an inflammatory response. P2X7 receptor promotes the activation of the inflammasome and the release of interleukin-1β, the production of inflammatory lipids, and the generation of reactive oxygen species. In this study, we analyzed the mechanism of P2X7 receptor responsible of TNF-α release after priming macrophages with LPS doses ≤100 ng/ml. We found that P2X7 receptor increases the extracellular activity of TACE through the release of the mature form of TACE in exosomes. This effect was blocked using P2X7 receptor inhibitors or in macrophages obtained from P2X7 receptor-deficient mice. Elevation of intracellular Ca2+ and p38 mitogen-activated protein kinase after P2X7 receptor activation were involved in the release of TACE, which was able to process TNF-α on nearby expressing cells. Finally, we observed an increase of TNF-α in the peritoneal lavage of mice treated with LPS and ATP. In conclusion, P2X7 receptor induces the release of TACE in exosomes to the extracellular compartment that could amplify the pro-inflammatory signal associated to this receptor. These results are important for the development of therapeutics targeting P2X7 receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.