Twenty healthy adult humans had serum samples drawn on four occasions within a 24-hr period: after a 12 hr overnight fast, 4-5 hr after a high fat breakfast, at midafternoon, and the next morning after another 12 hr fast. Nonfasting samples had 22% to 29% higher mean concentrations (p less than 0.05) than did fasting samples for polychlorinated biphenyls (PCBs, 4.81 vs 3.74 ng/g serum wt), hexachlorobenzene (HCB, 0.163 vs 0.134 ng/g serum wt), and p,p'-dichlorodiphenyl-dichloroethylene (p,p'-DDE, 6.74 vs 5.37 ng/g serum wt) measured by electron capture gas liquid chromatography. Total serum lipids were estimated from measurements of total cholesterol, free cholesterol, triglycerides, and phospholipids and were 20% higher in nonfasting samples than in fasting samples (7.05 g/L vs 5.86 g/L). When PCBs, HCB, and p,p'-DDE concentrations were corrected by total serum lipids, results from fasting and non-fasting samples were not statistically different. Because of the differences in these chlorinated hydrocarbon concentrations observed with different sample collection regimens, meaningful comparison of analytical results requires standardizing collection procedures or correcting by total serum lipid levels.
An enzymatic hydrolysis isotope dilution-mass spectrometric method was developed for reference quantification of specific proteins. The analytical procedure involved measuring a reproducibly hydrolyzed peptide (serving as the primary standard) unique to a specific protein. This new mass spectrometric method was evaluated by assessing the concentration of apolipoprotein (apo) A-I in the European Community Bureau of Reference (BCR) lyophilized Certified Reference Material (CRM 393). We used the method to make 96 measurements (4 replicate analyses of 4 enzymatic digests of 6 vials of BCR-CRM 393), which gave an average total protein mass of 1.048 mg (+/- 1.0% at 99% confidence limits). The total overall analytical CV was 3.95%. The results of this evaluation of our model approach to determine the concentration of a specific protein in a purified preparation demonstrated that our new mass spectrometric method can be used to measure apolipoproteins and other specific proteins without the use of epitopic immunoassay methods.
We performed temporal and thermal stability studies on SP3-07, a liquid-stabilized reference material for apolipoprotein (apo) B, selected during the previous phase of the International Federation of Clinical Chemistry project on standardization of apolipoprotein measurements. Results indicate that SP3-07 stored at -70 degrees C has the long-term stability required for a reference material. We assigned an accuracy-based apo B value of 1.22 g/L to SP3-07, using a nephelometric method that was calibrated with freshly isolated low-density lipoprotein for which the apo B mass value was determined by a standardized sodium dodecyl sulfate-Lowry procedure. Using a common protocol, the study participants transferred the assigned mass value from SP3-07 to the individual calibrators of the analytical systems and measured the apo B concentration of 20 fresh-frozen samples obtained from individual donors and covering a clinically relevant range of apo B values. The among-laboratory CV on these samples, analyzed by 25 analytical systems, ranged from 3.1% to 6.7%. These results demonstrate the lack of matrix effects of SP3-07 and its ability to provide accurate and comparable apo B values in a variety of immunochemical methods. On the basis of the outcome of these studies, the World Health Organization has endorsed SP3-07 as the International Reference Material for Apolipoprotein B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.