To define numerically the clinical severity of facioscapulohumeral muscular dystrophy (FSHD), we developed a protocol that quantifies muscle weakness by combining the functional evaluation of six muscle groups affected in this disease. To validate reproducibility of the protocol, 69 patients were recruited. Each patient was evaluated by at least five neurologists, and an FSHD severity score was given by each examiner. The degree of agreement among clinicians' evaluations was measured by kappa-statistics. Nineteen subjects received a score between 0 and 1, 9 had a score between 2 and 4, 20 received a score between 5 and 10, and 8 had a score between 11 and 15. Of the 13 subjects with D4Z4 alleles within the normal range (ranging from 10 to 150 repeats), 12 obtained a score of 0 and only 1 had a score of 1. Kappa-statistics showed a very high concordance for all muscle groups. We developed a simple, reliable, easily used tool to define the clinical expression of FSHD. Longitudinal studies will assess its sensitivity and utility in measuring changes for widespread use.
Our findings, supported by meta-analysis of previous literature, suggest the presence of two different pathogenetic mechanisms: late onset phenotypes may arise through loss of function secondary to haploinsufficiency, while dominant negative or toxic gain of function mechanisms may explain the severity of early phenotypes. This model of patient stratification may help patient management and facilitate future studies aimed at deciphering lamin A/C pathogenesis.
Myotonia is a condition characterized by impaired relaxation of muscle following sudden forceful contraction. We systematically screened all 23 exons of the CLCN1 gene in 88 unrelated patients with myotonia and identified mutations in 14 patients. Six novel mutations were discovered: five were missense (S132C, L283F, T310M, F428S and T550M) found in heterozygous patients, and one was a nonsense mutation (E193X) in a homozygous patient. While five patients had a clinical diagnosis of myotonia congenita, the patient with the F428S mutation exhibited symptoms characteristic of paramyotonia congenita--a condition usually thought to be caused by mutations in the sodium channel gene SCN4A. Nevertheless, no mutations in SCN4A were identified in this patient. The functional consequences of the novel CLCN1 sequence variants were explored by recording chloride currents from human embryonic kidney cells transiently expressing homo- or heterodimeric mutant channels. The five tested mutations caused distinct functional alterations of the homodimeric human muscle chloride ion channel hClC-1. S132C and T550M conferred novel hyperpolarization-induced gating steps, L283F and T310M caused a shift of the activation curve to more positive potentials and F428S reduced the expression level of hClC-1 channels. All showed a dominant-negative effect. For S132C, L283F, T310M and T550M, heterodimeric channels consisting of one wild-type (WT) and one mutant subunit exhibited a shifted activation curve at low intracellular [Cl(-)]. WT-F428S channels displayed properties similar to WT hClC-1, but expressed at significantly lower levels. The novel mutations exhibit a broad variety of functional defects that, by distinct mechanisms, cause a significant reduction of the resting chloride conductance in muscle of heterozygous patients. Our results provide novel insights into functional alterations and clinical symptoms caused by mutations in CLCN1.
Background: Subjects with facioscapulohumeral muscular dystrophy (FSHD) do not generally suffer from significant cardiac symptoms. Although with heterogeneous results, studies reported to date indicate that heart alterations unrelated to cardiomyopathy are possible in FSHD. Patients and Methods: We describe the findings of a multicenter investigation aimed at detecting cardiac abnormalities in 83 FSHD patients, 44 males and 39 females with a mean age of 47 years. All patients underwent clinical heart examination, 12-lead electrocardiography and 24-hour Holter monitoring; echocardiography was also performed on most patients. Results: Among the 83 patients, 62 with no cardiovascular risk factors were identified. Ten of them manifested clinical or subclinical cardiac involvement: 5 reported symptoms represented mostly by frequent palpitations secondary to supraventricular arrhythmia and another 5 exhibited electrocardiographic signs of short runs of supraventricular paroxysmal tachycardia. In the absence of cardiovascular risk factors, we found symptoms or signs of heart involvement of mainly arrhythmic origin in 10 of our 83 FSHD patients (12%). Conclusions: Considering our data and those available in the literature as a whole, arrhythmic alterations seem to be detected more frequently than expected in FSHD patients.
Recent data suggest that death of muscle cells during development and in selected pathological conditions occurs via apoptosis. We investigated the occurrence of apoptosis in normal and pathological human skeletal muscle, using in situ end-labeling (ISEL) to detect DNA fragmentation, and immunohistochemistry for the expression of tissue transglutaminase and interleukin-1beta-converting enzyme (ICE)-like proteases. In normal subjects, apoptotic myonuclei were occasionally observed as evidence of normal tissue turnover. Myonuclear apoptosis due to a deficit of trophic support from nerve cells also occurred in spinal muscular atrophies. No apoptosis of muscle cells was found in dystrophinopathies, myotonic dystrophy and inflammatory myopathies, suggesting that death of myofibers in those conditions is not due to activation of a gene-directed program of death. In dystrophinopathies and inflammatory myopathies, apoptosis was found in interstitial mononuclear cells, as a likely mechanism of clearance of the inflammatory infiltrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.