Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confi ned in toroidal tokamak devices requires the development of effi cient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing signifi cant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors.
The dynamics of high energy (up to 20 MeV) runaway electrons in the Frascati Tokamak Upgrade (FTU) is investigated using a gamma-ray spectrometer system which detects photons produced when runaway electrons interact with the plasma facing components [B. Esposito et al., Nucl. Instrum. Methods 476, 522 (2002)]. Runaway electrons are usually generated during the plasma current ramp-up, accelerated to MeV energies, and contained stably during the whole discharge time, which lasts for more than one second. This time is long enough for them to reach the limiting energy that results from the balance between acceleration in the electric field, collisions with the plasma particles and synchrotron radiation losses. The maximum energy inferred from the gamma spectra is shown to be in agreement with the runaway limiting energy predicted by a test particle description of the runaway dynamics [J. R. Martı́n-Solı́s et al., Phys. Plasmas 5, 2370 (1998)]. It is found that the runaway energy behavior during the discharge is determined by the time evolution of the plasma parameters only (mainly E∥, ne and Zeff) and that the synchrotron radiation losses associated with the electron gyromotion around the magnetic field lines can explain the measured limiting runaway energy in FTU.
FAST is a new machine proposed to support ITER experimental exploitation as well as to anticipate DEMO relevant physics and technology. FAST is aimed at studying, under burning plasma relevant conditions, fast particle (FP) physics, plasma operations and plasma wall interaction in an integrated way. FAST has the capability to approach all the ITER scenarios significantly closer than the present day experiments using deuterium plasmas. The necessity of achieving ITER relevant performance with a moderate cost has led to conceiving a compact tokamak (R = 1.82 m, a = 0.64 m) with high toroidal field (B T up to 8.5 T) and plasma current (I p up to 8 MA). In order to study FP behaviours under conditions similar to those of ITER, the project has been provided with a dominant ion cyclotron resonance heating system (ICRH; 30 MW on the plasma). Moreover, the experiment foresees the use of 6 MW of lower hybrid (LHCD), essentially for plasma control and for non-inductive current drive, and of electron cyclotron resonance heating (ECRH, 4 MW) for localized electron heating and plasma control. The ports have been designed to accommodate up to 10 MW of negative neutral beams (NNBI) in the energy range 0.5-1 MeV. The total power input will be in the 30-40 MW range under different plasma scenarios with a wall power load comparable to that of ITER (P /R ∼ 22 MW m −1). All the ITER scenarios will be studied: from the reference H mode, with plasma edge and ELMs characteristics similar to the ITER ones (Q up to ≈1.5), to a full current drive scenario, lasting around 170 s. The first wall (FW) as well as the divertor plates will be of tungsten in order to ensure reactor relevant
Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The turbulence in the scrape-off layer (SOL) plasma of FTU is characterized in order to assess its effect on the current drive efficiency of the lower hybrid (LH) waves. Amplitude, frequency and perpendicular wave vector of the fluctuations are measured for a variety of the main plasma conditions in front of the LH antenna together with the temperature and density in the SOL and used as inputs for the linear scattering theory of the LH waves developed many years ago. This theoretical model can account for both the frequency spectral broadening of the LH pump and the variations of the driven current, inferred by the perpendicular fast electron bremsstrahlung signals. The fraction of the LH power that is then deduced to be effective for current drive appears to be well related to the calculated optical thickness τ of the SOL. It drops as low as 40% as τ increases, consistent with the model prediction. Possible ways to control the SOL optical depth are investigated and a clear relation of the fluctuation level with the collisionality is found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.