Background-Extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (p38-MAPK) have been shown to regulate various cellular processes, including cell growth, proliferation, and apoptosis in the heart. However, the function of these signaling pathways in the control of cardiac contractility is unclear. Here, we characterized the contribution of ERK1/2 and p38-MAPK to the inotropic effect of endothelin-1 (ET-1). Methods and Results-In isolated perfused rat hearts, infusion of ET-1 (1 nmol/L) for 10 minutes increased contractility and phosphorylation of ERK1/2 and their downstream target p90 ribosomal S6 kinase (p90RSK). Suppression of ERK1/2 activation prevented p90RSK phosphorylation and attenuated the inotropic effect of ET-1. Pharmacological inhibition of epidermal growth factor receptor kinase activity abolished ET-1-induced epidermal growth factor receptor transactivation and ERK1/2 and p90RSK phosphorylation and reduced ET-1-mediated inotropic response. Moreover, inhibition of the p90RSK target Na ϩ -H ϩ exchanger 1 attenuated the inotropic effect of ET-1. In contrast to ERK1/2 signaling, suppression of p38-MAPK activity further augmented ET-1-enhanced contractility, which was accompanied by increased phosphorylation of phospholamban at Ser-16. Conclusions-MAPKs play opposing roles in the regulation of cardiac contractility in that the ERK1/2-mediated positive inotropic response to ET-1 is counterbalanced by simultaneous activation of p38-MAPK. Hence, selective activation of ERK1/2 signaling and inhibition of p38-MAPK signaling may represent novel means to support cardiac function in
The zinc finger transcription factor GATA-4 has been implicated as a critical regulator of inducible cardiac gene expression and as a potential mediator of the hypertrophic program. However, the precise intracellular mechanisms that regulate the DNA-binding activity of GATA-4 are not fully understood. The aim of the present study was to examine the role of mitogen-activated protein kinases (p38 kinase, extracellular signal-regulated protein kinase, and c-Jun N-terminal protein kinase) in the left ventricular wall stress-induced activation of GATA-4 DNA binding in adult heart. Isolated perfused rat hearts were subjected to increased left ventricular wall stress by inflating a balloon in the ventricle. Gel mobility shift assays were used to analyze the transacting factors that interact with the GATA motifs of the B-type natriuretic peptide promoter. The left ventricular wall stress rapidly activated GATA-4 DNA binding and significantly increased the levels of phosphorylated p38 kinase, extracellular signal-regulated protein kinase, and c-Jun N-terminal protein kinase. The wall stress-induced increase in the DNA-binding activity of GATA-4 was abolished both in the presence of the p38 inhibitor SB239063 and MEK1/2 inhibitor U0126. In contrast, the inhibition of c-Jun N-terminal protein kinase by CEP11004 had no effect on the baseline or stretchinduced GATA-4 DNA binding. Moreover, GATA-4 DNA binding was up-regulated by mechanical stretch in the isolated rat atria via p38 and extracellular signal-regulated protein kinase. In conclusion, the present study demonstrates that both p38 and extracellular signalregulated protein kinase are required for the stretchinduced GATA-4 binding in intact heart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.