Among the reactions involved in the production and destruction of deuterium during Big Bang Nucleosynthesis, the deuterium-burning D(p,γ) 3 He reaction has the largest uncertainty and limits the precision of theoretical estimates of primordial deuterium abundance. Here we report the results of a careful commissioning of the experimental setup used to measure the cross-section of the D(p,γ) 3 He reaction at the Laboratory for Underground Nuclear Astrophysics of the Gran Sasso Laboratory (Italy). The commissioning was aimed at minimising all sources of systematic uncertainty in the measured cross sections. The overall systematic error achieved (< 3%) will enable improved predictions of BBN deuterium abundance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.