Bone lesions above a critical size become scarred rather than regenerated, leading to nonunion. We have attempted to obtain a greater degree of regeneration by using a resorbable scaffold with regeneration-competent cells to recreate an embryonic environment in injured adult tissues, and thus improve clinical outcome. We have used a combination of a coral scaffold with in vitro-expanded marrow stromal cells (MSC) to increase osteogenesis more than that obtained with the scaffold alone or the scaffold plus fresh bone marrow. The efficiency of the various combinations was assessed in a large segmental defect model in sheep. The tissue-engineered artificial bone underwent morphogenesis leading to complete recorticalization and the formation of a medullary canal with mature lamellar cortical bone in the most favorable cases. Clinical union never occurred when the defects were left empty or filled with the scaffold alone. In contrast, clinical union was obtained in three out of seven operated limbs when the defects were filled with the tissue-engineered bone.
Standardized particulate bone constructs, obtained by expanding autologous mesenchymal stem cells (MSCs) onto coral granules in vitro, were transplanted into long-bone, critical-size defects in sheep. Control experiments were also performed in which autologous bone grafts were implanted. Defect cavities were lined with a preformed vascularized membrane (induced by temporarily inserting a cement spacer for 6 weeks prior to bone construct implantation), which served as a mold keeping the engineered bone granules in place. Radiographic, histological, and computed tomographic tests performed 6 months later showed that the osteogenic abilities of the engineered construct and autograft were significantly greater than those of coral scaffold alone. No significant differences were found between the amount of newly formed bone in defects filled with coral/MSCs and those filled with autograft, yet radiological scores differed significantly between the two groups (21% and 100% healed cortices, respectively). The present study on a clinically relevant animal model provides the first evidence that standardized particulate bone constructs can be used to repair large bone defects and that their osteogenic ability approaches that of bone autograft, the bone repair benchmark. By proving feasibility, the present study makes possible the treatment of segmental bone losses with bone constructs engineered from granules, a process which is much simpler than preparing customized massive constructs using computer-assisted techniques. Important parameters, such as the rate of scaffold resorption and the number of MSCs to be seeded on the scaffolds, need to be optimized before reaching pertinent definitive conclusions. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.