The interference effects are studied and compared with for data sets from TEXONO, GEMMA, BOREXINO, LSND as well as CHARM II experiments. Our results provide more stringent bounds to some regions of parameter space.
Theνe − e − elastic scattering cross-section was measured with a CsI(Tl) scintillating crystal array having a total mass of 187 kg. The detector was exposed to an average reactorνe flux of 6.4 × 10 12 cm −2 s −1 at the Kuo-Sheng Nuclear Power Station. The experimental design, conceptual merits, detector hardware, data analysis and background understanding of the experiment are presented. Using 29882/7369 kg-days of Reactor ON/OFF data, the Standard Model (SM) electroweak interaction was probed at the squared 4-momentum transfer range of Q 2 ∼ 3 × 10 −6 GeV 2 . The ratio of experimental to SM cross-sections of ξ = [1.08 ± 0.21(stat) ± 0.16(sys)] was measured. Constraints on the electroweak parameters (gV , gA) were placed, corresponding to a weak mixing angle measurement of sin 2 θW = 0.251 ± 0.031(stat ) ± 0.024(sys ). Destructive interference in the SMνe−e process was verified. Bounds on anomalous neutrino electromagnetic properties were placed: neutrino magnetic moment at µν e < 2.2 × 10 −10 µB and the neutrino charge radius at −2.1 × 10 −32 cm 2 < r 2 νe < 3.3 × 10 −32 cm 2 , both at 90% confidence level.
We report the first results of a light weakly interacting massive particles (WIMPs) search from the CDEX-10 experiment with a 10 kg germanium detector array immersed in liquid nitrogen at the China Jinping Underground Laboratory with a physics data size of 102.8 kg day. At an analysis threshold of 160 eVee, improved limits of 8×10^{-42} and 3×10^{-36} cm^{2} at a 90% confidence level on spin-independent and spin-dependent WIMP-nucleon cross sections, respectively, at a WIMP mass (m_{χ}) of 5 GeV/c^{2} are achieved. The lower reach of m_{χ} is extended to 2 GeV/c^{2}.
Abstract. The observation of neutrinoless double-beta decay (0νββ) would show that lepton number is violated, reveal that neutrinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 − 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of ∼0.1 count /(FWHM·t·yr) in the region of the signal. The current generation 76 Ge experiments GERDA and the Majorana Demonstrator, utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0νββ signal region of all 0νββ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale 76 Ge experiment. The collaboration aims to develop a phased 0νββ experimental program with discovery potential at a half-life approaching or at 10 28 years, using existing resources as appropriate to expedite physics results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.