We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. −0.07 . We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to m g ≤ 7.7 × 10 −23 eV=c 2 . In all cases, we find that GW170104 is consistent with general relativity.
Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitationalwave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10 −23 / √ Hz at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14th, 2015 the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [1], launching the era of gravitationalwave astronomy. The event, GW150914, was observed with a combined signal-to-noise ratio of 24 in coincidence by the two detectors. Here we present the main features of the detectors that enabled this observation. At full sensitivity, the Advanced LIGO detectors are designed to deliver another factor of three improvement in the signal-to-noise ratio for binary black hole systems similar in masses to GW150914.
On 2017 June 8 at 02:01:16.49 UTC, a gravitational-wave (GW) signal from the merger of two stellar-mass black holes was observed by the two Advanced Laser Interferometer Gravitational-Wave Observatory detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses of 12 − 2 + 7 M ⊙ and 7 − 2 + 2 M ⊙ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through GWs with electromagnetic observations. The source’s luminosity distance is 340 − 140 + 140 Mpc , corresponding to redshift 0.07 − 0.03 + 0.03 . We verify that the signal waveform is consistent with the predictions of general relativity.
The primary components of two new candidate events (GW190403 051519 and GW190426 190642) fall in the mass gap predicted by pair-instability supernova theory. We also expand the population of binaries with significantly asymmetric mass ratios reported in GWTC-2 by an additional two events (q < 0.61 and q < 0.62 at 90% credibility for GW190403 051519 and GW190917 114630 respectively), and find that 2 of the 8 new events have effective inspiral spins χ eff > 0 (at 90% credibility), while no binary is consistent with χ eff < 0 at the same significance.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.