Abstract. As part of the work of the Economic Commission for Europe of the United Nations Task Force on Emission Inventories, a new set of guidelines has been developed for assessing the emissions of sulphur, nitrogen oxides, NH 3, CH4, and nonmethane volatile organic compounds (NMVOC) from biogenic and other natural sources in Europe. This paper gives the background to these guidelines, describes the sources, and gives our recommended methodologies for estimating emissions. We have assembled land use and other statistics from European or national compilations and present emission estimates for the various natural/biogenic source categories based on these.
Two sets of global inventories of anthropogenic emissions of both oxides of sulfur and oxides of nitrogen for circa 1985 have been produced under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry Program. The two sets of inventories have different temporal, sectoral, and vertical resolution. Both were compiled using the same data sets; default data sets of global emissions have been refined via the use of more detailed regional data sets. This article reports on the compilation of the annual, one‐vertical‐level inventories, called version 1A; the inventory files are available to the scientific community via anonymous file transform protocol (FTP). Existing global inventories and regional inventories have been updated and combined on a 1° × 1° longitude/latitude grid. The resulting global anthropogenic emissions are 65 Tg S yr−1 and 21 Tg N yr−1; qualitative uncertainty estimates have been assigned on a regional basis. Emissions of both SOx and NOx are strongly localized in the highly populated and industrialized areas of eastern North America and across Europe; other smaller regions of large emissions are associated with densely populated areas with developed industries or in connection with exploitation of fuels or mineral reserves. The molar ratio of nitrogen to sulfur emissions reflects the overall character of sources; its value is generally between 0.33 and 10 for industrialized and heavily populated areas but varies over a wide range for other areas. We suggest that those requiring sulfur or nitrogen emission inventories standardize on the GEIA inventories, which we believe are authoritative and which are freely available to all users by anonymous FTP.
Abstract. The EMEP4UK modelling system is a high resolution (5×5 km 2 ) application of the EMEP chemistrytransport model, designed for scientific and policy studies in the UK. We demonstrate the use and performance of the EMEP4UK system through the study of ground-level ozone (O 3 ) during the extreme August 2003 heat-wave. Meteorology is generated by the Weather Research and Forecast (WRF) model, nudged every six hours with reanalysis data. We focus on SE England, where hourly average O 3 reached up to 140 ppb during the heat-wave. EMEP4UK accurately reproduces elevated O 3 and much of its day-to-day variability during the heat-wave. Key O 3 precursors, nitrogen dioxide and isoprene, are less well simulated, but show generally accurate diurnal cycles and concentrations to within a factor of ∼2-3 of observations. The modelled surface O 3 distribution has an intricate spatio-temporal structure, governed by a combination of meteorology, emissions and photochemistry. A series of sensitivity runs with the model are used to explore the factors that influenced O 3 levels during the heat-wave. Various factors appear to be important on different days and at different sites. Ozone imported from outside the model domain, especially the south, is very important on several days during the heat-wave, contributing up to 85 ppb. The effect of dry deposition is also important on several days. Modelled isoprene concentrations are generally best simulated if isoprene emissions are changed from the base emissions: typically doubled, but elevated by up to a factor of five on one hotCorrespondence to: M. Vieno (vieno.massimo@gmail.com) day. We found that accurate modelling of the exact positions of nitrogen oxide and volatile organic compound plumes is crucial for the successful simulation of O 3 at a particular time and location. Variations in temperature of ±5 K were found to have impacts on O 3 of typically less than ±10 ppb.
Abstract. During the last twenty-five years European emission data have been compiled and reported under the Cooperative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (EMEP) as part of the work under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP). This paper presents emission trends of SO2 reported to EMEP and validated within the programme for the period 1980–2004. These European anthropogenic sulphur emissions have been steadily decreasing over the last twenty-five years, amounting from about 55 Tg SO2 in 1980 to 15 Tg SO2 in 2004. The uncertainty in sulphur emission estimates for individual countries and years are documented to range between 3% and 25%. The relative contribution of European emissions to global anthropogenic sulphur emissions has been halved during this period. Based on annual emission reports from European countries, three emission reduction regimes have been identified. The period 1980–1989 is characterized by low annual emission reductions (below 5% reduction per year and 20% for the whole period) and is dominated by emission reductions in Western Europe. The period 1990–1999 is characterised by high annual emission reductions (up to 11% reduction per year and 54% for the whole period), most pronounced in Central and Eastern Europe. The annual emission reductions in the period 2000–2004 are medium to low and reflect the unified Europe, with equally large reductions in both East and West. The sulphur emission reduction has been largest in the sector Combustion in energy and transformation industries, but substantial decreases are also seen in the Non-industrial combustion plants together with the sectors Industrial Combustion and Industrial Production Processes. The majority of European countries have reduced their emissions by more than 60% between 1990 and 2004, and one quarter have already achieved sulphur emission reductions higher than 80%. At European level, the total sulphur target for 2010 set in the Gothenburg Protocol (16 Tg) has apparently already been met by 2004. However, still half of the Parties to the Gothenburg Protocol have to reduce further their sulphur emissions in order to attain their individual country total emission targets for 2010. It is also noteworthy that, contrasting the Gothenburg Protocol requirements, a growing number of countries have recently been reporting increasing sulphur emissions, while others report only minor further decreases. The emission trends presented here are supported by different studies of air concentrations and depositions carried out within and outside the framework of the LRTAP Convention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.