Despite a high prevalence of hepatitis B virus (HBV) infection in endangered apes, no HBV infection has been reported in small, old-world monkeys. In search for a small, nonhuman primate model, we investigated the prevalence of HBV infection in 260 macaque (Cercopithecidae) sera of various geographical origins (i.e., Morocco, Mauritius Island, and Asia). HBV-positive markers were detected in cynomolgus macaques (Macaca fascicularis) from Mauritius Island only, and, remarkably, HBV DNA was positive in 25.8% (31 of 120) and 42% (21 of 50) of serum and liver samples, respectively. Strong liver expression of hepatitis B surface antigen and hepatitis B core antigen was detected in approximately 20%-30% of hepatocytes. Furthermore, chronic infection with persisting HBV DNA was documented in all 6 infected macaques during an 8-month follow-up period. Whole HBV genome-sequencing data revealed that it was genotype D subtype ayw3 carrying substitution in position 67 of preS1. To confirm infectivity of this isolate, 3 Macaca sylvanus were inoculated with a pool of M. fascicularis serum and developed an acute HBV infection with 100% sequence homology, compared with HBV inoculum. We demonstrated the presence of a chronic HBV infection in M. fascicularis from Mauritius Island. This closely human-related HBV might have been transmitted from humans, because the initial breeding colony originated from very few ancestors 300 years ago when it was implemented by Portuguese who imported a handful of macaques from Java to Mauritius Island. Conclusion: This report on natural, persisting HBV infection among cynomolgus macaques provides the first evidence for the existence of a novel, small simian model of chronic HBV infection, immunologically close to humans, that should be most valuable for the study of immunotherapeutic approaches against chronic hepatitis B. (HEPATOLOGY 2013;58:1610-1620 See Editorial on Page 1533 D espite the existence of an effective vaccine, chronic hepatitis B virus (HBV) infection remains a major public health problem, responsible for 55% of hepatocellular carcinomas worldwide. Current chronic hepatitis B (CHB) treatments (e.g., interferon and nucleos(t)ide analogs) remain long lasting, expensive, partially efficient (25%), and frequently lead to the emergence of
The high genetic diversity of HIV-1 has a major impact on the quantification of plasma HIV-1 RNA, representing an increasingly difficult challenge. A total of 898 plasma specimens positive for HIV-1 RNA by commercial assays (Amplicor v1.5; Roche Diagnostic Systems, Alameda, CA or Versant v3.0; Bayer Diagnostics, Emeryville, CA) were tested using the Agence Nationale de Recherches sur le SIDA second-generation (G2) real-time reverse transcriptase polymerase chain reaction (RT-PCR) test: 518 samples containing HIV-1 of known subtype, including 88 from 2 subtype panels and 430 harboring B (n = 266) and non-B (n = 164) group M HIV-1 subtypes from patients followed up in 2002 through 2005 at Necker Hospital (Paris, France), and 380 samples from 10 different countries (Argentina, Cambodia, Cameroon, Central African Republic, France, Ivory Coast, Madagascar, Morocco, Thailand, and Zimbabwe). HIV-1 RNA values obtained by G2 real-time PCR were highly correlated with those obtained by the Amplicor v1.5 for B and non-B subtypes (R = 0.892 and 0.892, respectively) and for samples from diverse countries (R = 0.867 and 0.893 for real-time PCR vs. Amplicor v1.5 and real-time PCR vs. Versant v3.0, respectively). Approximately 30% of specimens harboring non-B subtypes were underquantified by at least -0.51 log10 in Amplicor v1.5 versus 5% underquantified in G2 real-time PCR. Discrepant results were also obtained with subtype B samples (14% underquantified by Amplicor v1.5 vs. 7% by G2 real-time PCR). Similar percentages were observed when comparing results obtained with the G2 real-time PCR assay with those obtained using the Versant assay. Addressing HIV-1 diversity, continual monitoring of HIV-1 RNA assays, together with molecular epidemiology studies, is required to improve the accuracy of all HIV RNA assays.
Background: The widespread use of antiretroviral agents and the growing occurrence of HIV-1 strains resistant to these drugs have given rise to serious concerns regarding the transmission of resistant viruses to newly infected persons, which may reduce the efficacy of a first-line antiretroviral therapy. Methodology: RNA was extracted from plasma samples of 98 treatment-naïve individuals with a plasma HIV RNA viral load of at least 1,000 copies/ml. Both protease (pr) and reverse transcriptase (rt) were amplified and sequenced using an automated sequencer. National Agency for AIDS Research (ANRS) and Stanford HIV database algorithms were used for interpretation of resistance data. Results: In the protease segment, various minor mutations were present in the majority of the sequenced samples with high frequencies. Only two major mutations, M46L and V82L, were separately found in three individuals of 71 (4.2%) with one carrying both mutations. In the reverse transcriptase gene, no NNRTIs-associated resistance mutations were detected. Only one patient of 70 (1.4%) carried the F77L mutation that is associated with NRTIs resistance. Genetic subtyping revealed that 74.6% of samples were infected with subtype B, 15.5% with CRF02_AG, 4.2% with CRF01_AE, 1.4% with C, 2.8% with G and 1.4% with subtype F2. Conclusions: The low prevalence of major mutations associated with resistance to antiretroviral drugs (ARVs) among drug-naïve individuals studied suggests that the routine of drug resistance testing may be unnecessary for all Moroccan individuals newly diagnosed or all patients beginning antiretroviral therapy. Nevertheless, continuous surveillance is required since greater access to antiretroviral drugs is expected in Morocco.
Introduction: Women infected with human immunodeficiency virus (HIV) have a higher risk of contracting human papillomavirus (HPV) infections and are more prone to develop cervical cancer. The objective of this study was to determine the prevalence of HPV and its association with risk factors among Moroccan women living with HIV/AIDS. Methodology: We enrolled 251 HIV-infected non-pregnant women in Morocco from February 2013 to September 2016. Sociodemographic, lifestyles, behavioral and clinical data were collected. Polymerase chain reaction followed by sequencing were performed for molecular detection and HPV genotyping in cervical samples, respectively. Results: Abnormal cervical smears were found in 34/246 patients (13.82%). The overall prevalence of HPV was 74.50%. HPV 58 was the most prevalent (39.29%) followed by HPV 18 (10.71%), HPV 70 (8.93%), HPV 33 (7.14%), HPV 6 (6.25%) and other genotypes (< 3%). Overall, high-risk HPV (HR-HPV) types were present in 75% (84/112) of patients and the prevalence of HR-HPV types in samples with abnormal Pap was higher than in normal Pap (55/83, 66.27% vs. 28/83,33.33%, p < 0.0001). Univariate analyses showed that none of the socio-demographic and behaviors factors was associated with HPV infection. Moreover, Pap results were not affected by HPV status (p = 0.532). Whereas, CD4 T-cell counts above 200/mm 3 at enrolment were apparently not protective to HPV infection. We found a high prevalence of HPV infection and HR-HPV types among HIV-positive women that significantly associated with abnormal Pap. Conclusion: Our findings suggest a high prevalence of HPV infection with high-risk types was observed among HIV-positive women warrant to implement a regular screening by Pap smear.
SARS-CoV-2 coronavirus uses for entry to human host cells a SARS-CoV receptor of the angiotensin-converting enzyme (ACE2) that catalyzes the conversion of angiotensin II into angiotensin (1-7). To understand the effect of ACE2 missense variants on protein structure, stability, and function, various bioinformatics tools were used including SIFT, PANTHER, PROVEAN, PolyPhen2.0, I. Mutant Suite, MUpro, SWISS-MODEL, Project HOPE, ModPred, QMEAN, ConSurf, and STRING. All twelve ACE2 nsSNPs were analyzed. Six ACE2 high-risk pathogenic nsSNPs (D427Y, R514G, R708W, R710C, R716C, and R768W) were found to be the most damaging by at least six software tools (cumulative score between 6 and 7) and exert deleterious effect on the ACE2 protein structure and likely function. Additionally, they revealed high conservation, less stability, and having a role in posttranslation modifications such a proteolytic cleavage or ADP-ribosylation. This in silico analysis provides information about functional nucleotide variants that have an impact on the ACE2 protein structure and function and therefore susceptibility to SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.