In this paper, we present our approach and the system description for Sub-task A and Sub Task B of SemEval 2019 Task 6: Identifying and Categorizing Offensive Language in Social Media. Sub-task A involves identifying if a given tweet is offensive or not, and Sub Task B involves detecting if an offensive tweet is targeted towards someone (group or an individual). Our models for Sub-task A is based on an ensemble of Convolutional Neural Network, Bidirectional LSTM with attention, and Bidirectional LSTM + Bidirectional GRU, whereas for Sub-task B, we rely on a set of heuristics derived from the training data and manual observation. We provide a detailed analysis of the results obtained using the trained models. Our team ranked 5th out of 103 participants in Sub-task A, achieving a macro F1 score of 0.807, and ranked 8th out of 75 participants in Sub Task B achieving a macro F1 of 0.695.
In this paper, we present our approach and the system description for the Social Media Mining for Health Applications (SMM4H) Shared Task 1,2 and 4 (2019). Our main contribution is to show the effectiveness of Transfer Learning approaches like BERT and ULM-FiT, and how they generalize for the classification tasks like identification of adverse drug reaction mentions and reporting of personal health problems in tweets. We show the use of stacked embeddings combined with BLSTM+CRF tagger for identifying spans mentioning adverse drug reactions in tweets. We also show that these approaches perform well even with imbalanced dataset in comparison to undersampling and oversampling.
Social media-based text mining in healthcare has received special attention in recent times due to the enhanced accessibility of social media sites like Twitter. The increasing trend of spreading important information in distress can help patients reach out to prospective blood donors in a time bound manner. However such manual efforts are mostly inefficient due to the limited network of a user. In a novel step to solve this problem, we present an annotated Emergency Blood Donation Request (EBDR) dataset 1 to classify tweets referring to the necessity of urgent blood donation requirement. Additionally, we also present an automated feature-based SVM classification technique that can help selective EBDR tweets reach relevant personals as well as medical authorities. Our experiments also present a quantitative evidence that linguistic along with handcrafted heuristics can act as the most representative set of signals this task with an accuracy of 97.89%.
In this paper we present our approach and the system description for Sub Task A of SemEval 2019 Task 9: Suggestion Mining from Online Reviews and Forums. Given a sentence, the task asks to predict whether the sentence consists of a suggestion or not. Our model is based on Universal Language Model Finetuning for Text Classification. We apply various pre-processing techniques before training the language and the classification model. We further provide detailed analysis of the results obtained using the trained model. Our team ranked 10th out of 34 participants, achieving an F1 score of 0.7011. We publicly share our implementation 1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.