Botulinum toxin injection on epicardial fat, which inhibits acetylcholine (ACh) release, reduced the presence of atrial fibrillation (AF) in patients after heart surgery. Thus, we wanted to study the profile of the released proteins of epicardial adipose tissue (EAT) under cholinergic activity (ACh treatment) and their value as AF predictors. Biopsies, explants, or primary cultures were obtained from the EAT of 85 patients that underwent open heart surgery. The quantification of muscarinic receptors (mAChR) by real‐time polymerase chain reaction or western blot showed their expression in EAT. Moreover, mAChR Type 3 was upregulated after adipogenesis induction (p < 0.05). Cholinergic fibers in EAT were detected by vesicular ACh transporter levels and/or acetylcholinesterase activity. ACh treatment modified the released proteins by EAT, which were identified by nano‐high‐performance liquid chromatography and TripleTOF analysis. These differentially released proteins were involved in cell structure, inflammation, or detoxification. After testing the plasma levels of alpha‐defensin 3 (inflammation‐involved protein) of patients who underwent open heart surgery (
n = 24), we observed differential levels between the patients who developed or did not develop postsurgery AF (1.58 ± 1.61 ng/ml vs. 6.2 ± 5.6 ng/ml;
p < 0.005). The cholinergic activity on EAT might suggest a new mechanism for studying the interplay among EAT, autonomic nervous system dysfunction, and AF.
The modulation of acetylcholine (ACh) release by botulinum toxin injection into epicardial fat diminishes atrial fibrillation (AF) recurrence. These results suggest an interaction between autonomic imbalance and epicardial fat as risk factors of AF. Our aim was to study the inflammatory, lipidic and fibroblastic profile of epicardial stroma from patients who underwent open‐heart surgery, their regulation by cholinergic activity and its association with AF. We performed in vitro and ex vivo assays from paired subcutaneous and epicardial stromal cells or explants from 33 patients. Acute ACh effects in inflammation and lipid‐related genes were analysed by qPCR, in intracellular calcium mobilization were performed by Fluo‐4 AM staining and in neutrophil migration by trans‐well assays. Chronic ACh effects on lipid accumulation were visualized by AdipoRed. Plasma protein regulation by parasympathetic denervation was studied in vagotomized rats. Our results showed a higher pro‐inflammatory profile in epicardial regarding subcutaneous stromal cells. Acute ACh treatment up‐regulated monocyte chemoattractant protein 1 levels. Chronic ACh treatment improved lipid accumulation within epicardial stromal cells (60.50% [22.82‐85.13] vs 13.85% [6.17‐23.16], P < .001). Additionally, patients with AF had higher levels of fatty acid‐binding protein 4 (1.54 ± 0.01 vs 1.47 ± 0.01, P = .005). Its plasma levels were pronouncedly declined in vagotomized rats (2.02 ± 0.21 ng/mL vs 0.65 ± 0.23 ng/mL, P < .001). Our findings support the characterization of acute or chronic cholinergic activity on epicardial stroma and its association with AF.
AVNA can safely be performed immediately following LDP. A combined approach obviates the need for additional vascular access and optimizes feasibility and comfort for patients and healthcare providers. It offers an acceptable safety and efficacy profile, both acutely and upon intermediate-term follow-up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.