Western lifestyle with high salt consumption leads to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper (TH)17 cells, which may also contribute to hypertension. Induction of TH17 cells depends on the gut microbiota, yet the effect of salt on the gut microbiome is unknown. In mouse model systems, we show that high salt intake affects the gut microbiome, particularly by depleting Lactobacillus murinus. Consequently, L. murinus treatment prevents salt-induced aggravation of actively-induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension, by modulating TH17 cells. In line with these findings, moderate high salt challenge in a pilot study in humans reduces intestinal survival of Lactobacillus spp. along with increased TH17 cells and blood pressure. Our results connect high salt intake to the gut-immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.
Although resveratrol has widely been studied for its potential health benefits, little is known about its metabolic effects in humans. Our aims were to determine whether the polyphenol resveratrol improves insulin sensitivity in type 2 diabetic patients and to gain some insight into the mechanism of its action. After an initial general examination (including blood chemistry), nineteen patients enrolled in the 4-weeklong double-blind study were randomly assigned into two groups: a resveratrol group receiving oral 2 £ 5 mg resveratrol and a control group receiving placebo. Before and after the second and fourth weeks of the trial, insulin resistance/sensitivity, creatinine-normalised ortho-tyrosine level in urine samples (as a measure of oxidative stress), incretin levels and phosphorylated protein kinase B (pAkt):protein kinase B (Akt) ratio in platelets were assessed and statistically analysed. After the fourth week, resveratrol significantly decreased insulin resistance (homeostasis model of assessment for insulin resistance) and urinary ortho-tyrosine excretion, while it increased the pAkt:Akt ratio in platelets. On the other hand, it had no effect on parameters that relate to b-cell function (i.e. homeostasis model of assessment of b-cell function). The present study shows for the first time that resveratrol improves insulin sensitivity in humans, which might be due to a resveratrol-induced decrease in oxidative stress that leads to a more efficient insulin signalling via the Akt pathway.Key words: Resveratrol: Type 2 diabetes: Insulin sensitivity: Oxidative stress: Akt Despite the rather high average daily fat intake in France, compared with other European countries, epidemiological surveys document a relatively low rate of cardiovascular mortality. This phenomenon, which is often called the French paradox, is thought to be explained by a fairly high red wine consumption by the French (1,2) . Red wine is known to be rich in various polyphenolic compounds that might have a variety of health benefits. Among these polyphenols, the stilbene derivative resveratrol seems to be the most vigorously studied, which is probably due to the fact that it apparently affects a wide array of physiological and biochemical processes as shown in animal and cell culture studies (3) . On the other hand, human studies with conclusive results on resveratrol are regrettably lacking.Resveratrol is considered to have beneficial effects on the cardiovascular system, as it has been found to improve vasodilatation (4) , ischaemic preconditioning (5,6) , both of which seem to be the result of the activation of the endothelial NO synthase enzyme (7) , and to inhibit both platelet aggregation (3) and vascular smooth muscle cell proliferation (8) . In addition, resveratrol has also been demonstrated to show anti-inflammatory (9) and anti-tumour activities (3) , and it might even have considerable anti-ageing properties as it provokes changes in cell signalling that mimics those found upon energy restriction (3) .Oxidative stress, whi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.