Restless legs syndrome (RLS) is a frequent neurological disorder characterized by an imperative urge to move the legs during night, unpleasant sensation in the lower limbs, disturbed sleep and increased cardiovascular morbidity. In a genome-wide association study we found highly significant associations between RLS and intronic variants in the homeobox gene MEIS1, the BTBD9 gene encoding a BTB(POZ) domain as well as variants in a third locus containing the genes encoding mitogen-activated protein kinase MAP2K5 and the transcription factor LBXCOR1 on chromosomes 2p, 6p and 15q, respectively. Two independent replications confirmed these association signals. Each genetic variant was associated with a more than 50% increase in risk for RLS, with the combined allelic variants conferring more than half of the risk. MEIS1 has been implicated in limb development, raising the possibility that RLS has components of a developmental disorder.
Genome Biology 2011, 12(Suppl 1):I18 Deep exome resequencing is a powerful approach for delineating patterns of protein-coding variation among genes, pathways, individuals and populations. We analyzed exome data from 2,440 individuals of European and African ancestry as part of the National Heart, Lung, and Blood Institute's Exome Project, the aim of which is to discover novel genes and mechanisms that contribute to heart, lung and blood disorders. Each exome was sequenced to a mean coverage of 116×, allowing detailed inferences about the population genomic patterns of both common variation and rare coding variation. We identifi ed more than 500,000 single nucleotide variations, the majority of which were novel and rare (76% of variants had a minor allele frequency of less than 0.1%), refl ecting the recent dramatic increase in the size of the human population. The unprecedented magnitude of this dataset allowed us to rigorously characterize the large variation in nucleotide diversity among genes (ranging from 0 to 1.32%), as well as the role of positive and purifying selection in shaping patterns of protein-coding variation and the diff erential signatures of population structure from rare and common variation. This dataset provides a framework for personal genomics and is an important resource that will allow inferences of broad importance to human evolution and health. I2 Abstract not submitted for online publication. I3 Are clinical genomes already becoming semi-routine for patient care?
Left-right asymmetrical brain function underlies much of human cognition, behavior and emotion. Abnormalities of cerebral asymmetry are associated with schizophrenia and other neuropsychiatric disorders. The molecular, developmental and evolutionary origins of human brain asymmetry are unknown. We found significant association of a haplotype upstream of the gene LRRTM1 (Leucine-rich repeat transmembrane neuronal 1) with a quantitative measure of human handedness in a set of dyslexic siblings, when the haplotype was inherited paternally (P = 0.00002). While we were unable to find this effect in an epidemiological set of twin-based sibships, we did find that the same haplotype is overtransmitted paternally to individuals with schizophrenia/schizoaffective disorder in a study of 1002 affected families (P = 0.0014). We then found direct confirmatory evidence that LRRTM1 is an imprinted gene in humans that shows a variable pattern of maternal downregulation. We also showed that LRRTM1 is expressed during the development of specific forebrain structures, and thus could influence neuronal differentiation and connectivity. This is the first potential genetic influence on human handedness to be identified, and the first putative genetic effect on variability in human brain asymmetry. LRRTM1 is a candidate gene for involvement in several common neurodevelopmental disorders, and may have played a role in human cognitive and behavioral evolution.
Schizophrenia likely results from poorly understood genetic and environmental factors. We studied the gene encoding the synaptic protein SHANK3 in 285 controls and 185 schizophrenia patients with unaffected parents. Two de novo mutations (R1117X and R536W) were identified in two families, one being found in three affected brothers, suggesting germline mosaicism. Zebrafish and rat hippocampal neuron assays revealed behavior and differentiation defects resulting from the R1117X mutant. As mutations in SHANK3 were previously reported in autism, the occurrence of SHANK3 mutations in subjects with a schizophrenia phenotype suggests a molecular genetic link between these two neurodevelopmental disorders. S chizophrenia (SCZ) is a chronic psychiatric disorder characterized by a profound disruption in cognition, behavior, and emotion which begins in adolescence or early adulthood. There is significant clinical variability among SCZ patients, suggesting that it is etiologically heterogeneous. There are several hypotheses to explain genetic factors underlying SCZ, such as polygenic inheritance (1) or, in a fraction of cases, variably penetrant de novo mutations. The de novo hypothesis is based on several observations. One is that relatives of an individual with SCZ have a higher risk of being affected (parents 6%, offspring 13%, and siblings 9% compared with 1% for the general population) (2). The greater frequency in offspring than in parents may occur if new mutations account for a fraction of SCZ cases. Also, there is a significantly increased risk of SCZ with increasing paternal age (3), which could result from the age-related increase in paternal de novo mutations. Furthermore, despite reduced reproductive fitness (4) and extremely variable environmental factors, the incidence of SCZ is maintained at ∼1% worldwide. Interestingly, recent studies reported de novo copy-number variants in SCZ, providing further support for the de novo mutation hypothesis (5, 6).As part of the Synapse to Disease (S2D) project aimed at exploring the de novo mutation hypothesis in brain diseases, we are sequencing synaptic genes in individuals with SCZ and autism spectrum disorder (ASD), two neurodevelopmental disorders. Recently, mutations in the SHANK3 (SH3 and multiple ankyrin repeat domains 3) gene, encoding a scaffolding protein abundant in the postsynaptic density of excitatory synapses on dendritic spines, were found in patients with ASD (7-9). Considering that ASD and SCZ share some features, we decided to screen the SHANK3 gene in our cohort of SCZ probands. Given our hypothesis that a significant fraction of SCZ cases are the result of new mutations, we selected SCZ cases with unaffected parents and screened for de novo mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.