Vaccinia virus is the prototypic orthopoxvirus and was the vaccine used to eradicate smallpox, yet the expression profiles of many of its genes remain unknown. Using a genome tiling array approach, we simultaneously measured the expression levels of all 223 annotated vaccinia virus genes during infection and determined their kinetics. Almost all of the genes were transcribed, and for 62 of these, this is the first empirical evidence of expression. Most remarkably, classification of the genes by their expression profiles revealed 35 genes exhibiting immediate‐early expression. Although a similar kinetic class has been described for other virus families, this is the first demonstration of its existence in orthopoxviruses. Despite expression levels higher than for genes in the other 3 kinetic classes, the functions of more than half of these remain unknown. Additionally, genes within each kinetic class were spatially grouped together in the genome. This genome‐wide picture of transcription alters our understanding of how orthopoxviruses regulate gene expression. This work was supported by National Institutes of Health grants ROI‐AI‐56268 and HHSN266200400124C.
BackgroundLipopolysaccharide (LPS), also referred to as endotoxin, is the major constituent of the outer leaflet of the outer membrane of virtually all Gram-negative bacteria. The lipid A moiety, which anchors the LPS molecule to the outer membrane, acts as a potent agonist for Toll-like receptor 4/myeloid differentiation factor 2-mediated pro-inflammatory activity in mammals and, thus, represents the endotoxic principle of LPS. Recombinant proteins, commonly manufactured in Escherichia coli, are generally contaminated with endotoxin. Removal of bacterial endotoxin from recombinant therapeutic proteins is a challenging and expensive process that has been necessary to ensure the safety of the final product.ResultsAs an alternative strategy for common endotoxin removal methods, we have developed a series of E. coli strains that are able to grow and express recombinant proteins with the endotoxin precursor lipid IVA as the only LPS-related molecule in their outer membranes. Lipid IVA does not trigger an endotoxic response in humans typical of bacterial LPS chemotypes. Hence the engineered cells themselves, and the purified proteins expressed within these cells display extremely low endotoxin levels.ConclusionsThis paper describes the preparation and characterization of endotoxin-free E. coli strains, and demonstrates the direct production of recombinant proteins with negligible endotoxin contamination.Electronic supplementary materialThe online version of this article (doi:10.1186/s12934-015-0241-5) contains supplementary material, which is available to authorized users.
The glycome acts as an essential interface between cells and the surrounding microenvironment. However, changes in glycosylation occur in nearly all breast cancers, which can alter this interaction. Here, we report that profiles of glycosylation vary between ER-positive and ER-negative breast cancers. We found that genes involved in the synthesis of sialyl-Lewis x (sLe
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.