Based on an analysis of measured data and distribution factors, we developed the China Aquatic Mercury Release (CAMR) model, which we used to calculate an inventory of mercury (Hg) that was released to aquatic environments from primary anthropogenic sources in China. We estimated a total release of 98 tons of Hg in 2012, including coal-fired power plants (17%), nonferrous metal smelting (33%), coal mining and washing (25%), domestic sewage (17%), and other sectors (8.3%). The total primary anthropogenic Hg released to aquatic environments in China decreased at an annual average rate of 1.7% between 2001 and 2012, even though GDP grew at an annual average rate of 10% during this period. In addition to the Hg that was released to aquatic environments in China's provinces, we estimated the Hg release amounts and intensities (in g/km(2)·yr) for China's 58 secondary river basins. The highest aquatic Hg release intensities in China were associated with industrial wastewater on the North China Plain and domestic sewage in eastern China and southern China. We found that the overall uncertainty of our inventory ranges from -22% to 32%. We suggest that the inventory provided by this study can help establish a more accurate map of regional and global Hg cycling; it also has implications for water quality management in China.
Exports from mainland China are a significant source of mercury (Hg) in the adjacent seas (Bohai Sea, Yellow Sea, East China Sea, and South China Sea) near China. A total of 240 ± 23 Mg was contributed in 2012 (30% from natural sources and 70% from anthropogenic sources), including Hg from rivers, industrial wastewater, domestic sewage, groundwater, nonpoint sources, and coastal erosion. Among the various sources, the Hg from rivers amounts to 160 ± 21 Mg and plays a dominant role. The Hg that is exported from mainland China increased from 1984 to 2013; the contributions from rivers, industrial wastewater, domestic sewage and groundwater increased, and the contributions from nonpoint sources and coastal erosion remained stable. A box model is constructed to simulate the mass balance of Hg in these seas and quantify the sources, sinks and Hg biogeochemical cycle in the seas. In total, 160 Mg of Hg was transported to the Pacific Ocean and other oceans from these seas through oceanic currents in 2012, which could have negative impacts on the marine ecosystem. A prediction of the changes in Hg exportation through 2030 shows that the impacts of terrestrial export might worsen without effective pollution reduction measures and that the Hg load in these seas will increase, especially in the seawater of the Bohai Sea, Yellow Sea, and East China Sea and in the sea margin sediments of the Bohai Sea and East China Sea.
Abstract. Global policies that regulate anthropogenic mercury emissions to the environment require quantitative and comprehensive source-receptor relationships for mercury emissions, transport and deposition among major continental regions. In this study, we use the GEOS-Chem global chemical transport model to establish source-receptor relationships among 11 major continental regions worldwide. Source-receptor relationships for surface mercury concentrations (SMC) show that some regions (e.g., East Asia, the Indian subcontinent, and Europe) should be responsible for their local surface Hg(II) and Hg(P) concentrations due to near-field transport and deposition contributions from their local anthropogenic emissions (up to 64 and 71 % for Hg(II) and Hg(P), respectively, over East Asia). We define the region of primary influence (RPI) and the region of secondary influence (RSI) to establish intercontinental influence patterns. Results indicate that East Asia is the SMC RPI for almost all other regions, while Europe, Russia, and the Indian subcontinent also make some contributions to SMC over some receptor regions because they are dominant RSI source regions. Source-receptor relationships for mercury deposition show that approximately 16 and 17 % of dry and wet deposition, respectively, over North America originate from East Asia, indicating that transpacific transport of East Asian emissions is the major foreign source of mercury deposition in North America. Europe, Southeast Asia, and the Indian subcontinent are also important mercury deposition sources for some receptor regions because they are the dominant RSIs. We also quantify seasonal variation on mercury deposition contributions over other regions from East Asia. Results show that mercury deposition (including dry and wet) contributions from East Asia over the Northern Hemisphere receptor regions (e.g., North America, Europe, Russia, the Middle East, and Middle Asia) vary seasonally, with the maximum values in summer and minimum values in winter. The opposite seasonal pattern occurs on mercury dry deposition contributions over Southeast Asia and the Indian subcontinent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.