The World Health Organization has recently defined the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection a pandemic. The infection, that may cause a potentially very severe respiratory disease, now called coronavirus disease 2019 (COVID-19), has airborne transmission via droplets. The rate of transmission is quite high, higher than common influenza. Healthcare workers are at high risk of contracting the infection particularly when applying respiratory devices such as oxygen cannulas or noninvasive ventilation. The aim of this article is to provide evidence-based recommendations for the correct use of “respiratory devices” in the COVID-19 emergency and protect healthcare workers from contracting the SARS-CoV-2 infection.
IntroductionThe Coronavirus 2(SARS-CoV-2) outbreak spread rapidly in Italy and the lack of intensive care unit(ICU) beds soon became evident, forcing the application of noninvasive respiratory support(NRS) outside the ICU, raising concerns over staff contamination. We aimed to analyse the safety of the hospital staff, the feasibility, and outcomes of NRS applied to patients outside the ICU.MethodsIn this observational study, data from 670 consecutive patients with confirmed COVID-19 referred to the Pulmonology Units in nine hospitals between March 1st and May 10th,2020 were analysed. Data were collected including medication, mode and usage of the NRS (i.e. high-flow nasal cannula (HFNC), continuous positive airway pressure (CPAP), noninvasive ventilation(NIV)), length of stay in hospital, endotracheal intubation(ETI) and deaths.ResultsForty-two health-care workers (11.4%) tested positive for infection, but only three of them required hospitalisation. Data are reported for all patients (69.3% male), whose mean age was 68 (sd 13) years. The PaO2/FiO2 ratio at baseline was 152±79, and the majority of patients (49.3%) were treated with CPAP. The overall unadjusted 30-day mortality rate was 26.9% with 16%, 30%, and 30%, while the total ETI rate was 27% with 29%, 25% and 28%, for HFNC, CPAP, and NIV, respectively, and the relative probability to die was not related to the NRS used after adjustment for confounders. ETI and length of stay were not different among the groups. Mortality rate increased with age and comorbidity class progression.ConclusionsThe application of NRS outside the ICU is feasible and associated with favourable outcomes. Nonetheless, it was associated with a risk of staff contamination.
Rationale: The role of inspiratory effort still has to be determined as a potential predictor of noninvasive mechanical ventilation (NIV) failure in acute hypoxic de novo respiratory failure. Objectives: To explore the hypothesis that inspiratory effort might be a major determinant of NIV failure in these patients. Methods: Thirty consecutive patients with acute hypoxic de novo respiratory failure admitted to a single center and candidates for a 24-hour NIV trial were enrolled. Clinical features, tidal change in esophageal pressure (DPes), tidal change in dynamic transpulmonary pressure (DPL), expiratory VT, and respiratory rate were recorded on admission and 2-4 to 12-24 hours after NIV start and were tested for correlation with outcomes. Measurements and Main Results: DPes and DPes/DPL ratio were significantly lower 2 hours after NIV start in patients who successfully completed the NIV trial (n = 18) compared with those who needed endotracheal intubation (n = 12) (median [interquartile range], 11 [8-15] cm H 2 O vs. 31.5 [30-36] cm H 2 O; P , 0.0001), whereas other variables differed later. DPes was not related to other predictors of NIV failure at baseline. NIV-induced reduction in DPes of 10 cm H 2 O or more after 2 hours of treatment was strongly associated with avoidance of intubation and represented the most accurate predictor of treatment success (odds ratio, 15; 95% confidence interval, 2.8-110; P = 0.001 and area under the curve, 0.97; 95% confidence interval, 0.91-1; P , 0.0001). Conclusions: The magnitude of inspiratory effort relief as assessed by DPes variation within the first 2 hours of NIV was an early and accurate predictor of NIV outcome at 24 hours. Clinical trial registered with www.clinicaltrials.gov (NCT 03826797).
BackgroundWhile the role of acute non-invasive ventilation (NIV) has been shown to improve outcome in acute life-threatening hypercapnic respiratory failure in COPD, the evidence of clinical efficacy of long-term home NIV (LTH-NIV) for management of COPD is less. This document provides evidence-based recommendations for the clinical application of LTH-NIV in chronic hypercapnic COPD patients.Materials and methodsThe European Respiratory Society task force committee was composed of clinicians, methodologists and experts in the field of LTH-NIV. The committee developed recommendations based on the GRADE (Grading, Recommendation, Assessment, Development and Evaluation) methodology. The GRADE Evidence to Decision framework was used to formulate recommendations. A number of topics were addressed under a narrative format which provides a useful context for clinicians and patients.ResultsThe task force committee delivered conditional recommendations for four actionable PICO (target population-intervention-comparator-outcome) questions, 1) suggesting for the use of LTH-NIV in stable hypercapnic COPD; 2) suggesting for the use of LTH-NIV in COPD patients following a COPD exacerbation requiring acute NIV 3) suggesting for the use of NIV settings targeting a reduction in carbon dioxide and 4) suggesting for using fixed pressure support as first choice ventilator mode.ConclusionsManaging hypercapnia may be an important intervention for improving the health outcome of COPD patients with chronic respiratory failure. The task force conditionally supports the application of LTH-NIV to improve health outcome by targeting a reduction in carbon dioxide in COPD patients with persistent hypercapnic respiratory failure. These recommendations should be applied in clinical practice by practitioners that routinely care for chronic hypercapnic COPD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.