Rhinoviruses and enteroviruses are leading causes of respiratory infections. To evaluate genotypic diversity and identify forces shaping picornavirus evolution, we screened persons with respiratory illnesses by using rhinovirus-specifi c or generic real-time PCR assays. We then sequenced the 5′ untranslated region, capsid protein VP1, and protease precursor 3CD regions of virus-positive samples. Subsequent phylogenetic analysis identifi ed the large genotypic diversity of rhinoviruses circulating in humans. We identifi ed and completed the genome sequence of a new enterovirus genotype associated with respiratory symptoms and acute otitis media, confi rming the close relationship between rhinoviruses and enteroviruses and the need to detect both viruses in respiratory specimens. Finally, we identifi ed recombinants among circulating rhinoviruses and mapped their recombination sites, thereby demonstrating that rhinoviruses can recombine in their natural host. This study clarifi es the diversity and explains the reasons for evolution of these viruses.H uman rhinoviruses (HRVs) and enteroviruses (HEVs) are leading causes of infection in humans. These 2 picornaviruses share an identical genomic organization, have similar functional RNA secondary structures, and are classifi ed within the same genus (www.ictvonline.org/virusTaxonomy.asp) because of their high sequence homology (1). However, despite their common genomic features, these 2 groups of viruses have different phenotypic characteristics. In vivo, rhinoviruses are restricted to the respiratory tract, whereas enteroviruses infect primarily the gastrointestinal tract and can spread to other sites such as the central nervous system. However, some enteroviruses exhibit specifi c respiratory tropism and thus have properties similar to rhinoviruses (2-5). In vitro, most HRVs and HEVs differ by their optimal growth temperature, acid tolerance, receptor usage, and cell tropism. The genomic basis for these phenotypic differences between similar viruses is not yet fully understood.HRVs and HEVs are characterized by ≈100 serotypes. Recently, molecular diagnostic tools have shown that this diversity expands beyond those predefi ned serotypes and encompasses also previously unrecognized rhinovirus and enterovirus genotypes. As an example, a new HRV lineage named HRV-C was recently identifi ed and now complements the 2 previously known A and B lineages (6-8) (N.J. Knowles, pers. comm.). The C lineage has not only a distinct phylogeny (9-16) but is also characterized by specifi c cis-acting RNA structures (17).In this study, we screened a large number of persons with acute respiratory diseases by using assays designed to overcome the diversity of both rhinoviruses and enteroviruses circulating in humans. Whenever possible, we systematically sequenced 5′ untranslated region (UTR), capsid protein VP1, and protease precursor 3CD regions of strains. Our goals were 1) to characterize the diversity of circulating rhinoviruses and, to a lesser extent, enteroviruses, to identify put...
BackgroundThe incidence and outcomes of respiratory viral infections in lung transplant recipients (LTR) are not well defined. The objective of this prospective study conducted from June 2008 to March 2011 was to characterise the incidence and outcomes of viral respiratory infections in LTR. Methods Patients were seen in three contexts: studyspecific screenings covering all seasons; routine posttransplantation follow-up; and emergency visits. Nasopharyngeal specimens were collected systematically and bronchoalveolar lavage (BAL) was performed when clinically indicated. All specimens underwent testing with a wide panel of molecular assays targeting respiratory viruses.Results One hundred and twelve LTR had 903 encounters: 570 (63%) were screening visits, 124 (14%) were routine post-transplantation follow-up and 209 (23%) were emergency visits. Respiratory viruses were identified in 174 encounters, 34 of these via BAL. The incidence of infection was 0.83 per patient-year (95% CI 0.45 to 1.52). The viral infection rates upon screening, routine and emergency visits were 14%, 15% and 34%, respectively ( p<0.001). Picornavirus was identified most frequently in nasopharyngeal (85/140; 60.7%) and BAL specimens (20/34; 59%). Asymptomatic viral carriage, mainly of picornaviruses, was found at 10% of screening visits. Infections were associated with transient lung function loss and high calcineurin inhibitor blood levels. The hospitalisation rate was 50% (95% CI 30% to 70.9%) for influenza and parainfluenza and 16.9% (95% CI 11.2% to 23.9%) for other viruses. Acute rejection was not associated with viral infection (OR 0.4, 95% CI 0.1 to 1.3). Conclusions There is a high incidence of viral infection in LTR; asymptomatic carriage is rare. Viral infections contribute significantly to this population's respiratory symptomatology. No temporal association was observed between infection and acute rejection.
Enterovirus 71 (EV71) is one of the most virulent enteroviruses, but the specific molecular features that enhance its ability to disseminate in humans remain unknown. We analyzed the genomic features of EV71 in an immunocompromised host with disseminated disease according to the different sites of infection. Comparison of five full-length genomes sequenced directly from respiratory, gastrointestinal, nervous system, and blood specimens revealed three nucleotide changes that occurred within a five-day period: a non-conservative amino acid change in VP1 located within the BC loop (L97R), a region considered as an immunogenic site and possibly important in poliovirus host adaptation; a conservative amino acid substitution in protein 2B (A38V); and a silent mutation in protein 3D (L175). Infectious clones were constructed using both BrCr (lineage A) and the clinical strain (lineage C) backgrounds containing either one or both non-synonymous mutations. In vitro cell tropism and competition assays revealed that the VP1 97 Leu to Arg substitution within the BC loop conferred a replicative advantage in SH-SY5Y cells of neuroblastoma origin. Interestingly, this mutation was frequently associated in vitro with a second non-conservative mutation (E167G or E167A) in the VP1 EF loop in neuroblastoma cells. Comparative models of these EV71 VP1 variants were built to determine how the substitutions might affect VP1 structure and/or interactions with host cells and suggest that, while no significant structural changes were observed, the substitutions may alter interactions with host cell receptors. Taken together, our results show that the VP1 BC loop region of EV71 plays a critical role in cell tropism independent of EV71 lineage and, thus, may have contributed to dissemination and neurotropism in the immunocompromised patient.
This virus is an unrecognized cause of central nervous system infection, particularly among immunocompromised patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.