The eighteenth-century Malthusian prediction of population growth outstripping food production has not yet come to bear. Unprecedented agricultural land expansions since 1700, and technological innovations that began in the 1930s, have enabled more calorie production per capita than was ever available before in history. This remarkable success, however, has come at a great cost. Agriculture is a major cause of global environmental degradation. Malnutrition persists among large sections of the population, and a new epidemic of obesity is on the rise. We review both the successes and failures of the global food system, addressing ongoing debates on pathways to environmental health and food security. To deal with these challenges, a new coordinated research program blending modern breeding with agro-ecological methods is needed. We call on plant biologists to lead this effort and help steer humanity toward a safe operating space for agriculture.
A growing and more affluent human population is expected to increase the demand for resources and to accelerate habitat modification, but by how much and where remains unknown. Here we project and aggregate global spatial patterns of expected urban and agricultural expansion, conventional and unconventional oil and gas, coal, solar, wind, biofuels and mining development. Cumulatively, these threats place at risk 20% of the remaining global natural lands (19.68 million km2) and could result in half of the world’s biomes becoming >50% converted while doubling and tripling the extent of land converted in South America and Africa, respectively. Regionally, substantial shifts in land conversion could occur in Southern and Western South America, Central and Eastern Africa, and the Central Rocky Mountains of North America. With only 5% of the Earth’s at-risk natural lands under strict legal protection, estimating and proactively mitigating multi-sector development risk is critical for curtailing the further substantial loss of nature.
This dataset is a cross-country convenience sample of primary data measuring crop production and/or area by farm size for 55 countries that underlies the article entitled “How much of the world׳s food do smallholders produce?” (DOI: https://doi.org/10.1016/j.gfs.2018.05.002). The harmonized dataset is nationally representative with subnational resolution, sourced from agricultural censuses and household surveys. The dataset covers 154 crop species and 11 farm size classes, and is ontologically interoperable with other global agricultural datasets, such as the Food and Agricultural Organization׳s statistical database (FAOSTAT), and the World Census of Agriculture (WCA). The dataset includes estimates of the quantity of food, feed, processed agricultural commodities, seed, waste (post-harvest loss), or other uses; and potential human nutrition (i.e., kilocalories, fats, and proteins) generated by each farm size class. We explain the details of the dataset, the inclusion criteria used to assess each data source, the data harmonization procedures, and the spatial coverage. We detail assumptions underlying the construction of this dataset, including the use of aggregate field size as a proxy for farm size in some cases, and crop species omission biases resulting from converting local species names to harmonized names. We also provide bias estimates for commonly used methods for estimating food production by farm size: use of constant yields across farm size classes when crop production is not available, and relying on nationally representative household sample surveys that omitted non-family farms. Together this dataset represents the most complete empirically grounded estimate of how much food and nutrition smallholder farmers produce from crops.
Purpose This paper reflects on the Sustainability Research Symposium (SRS), a long-term student-led initiative (seven years) at McGill University in Montréal, Canada, that seeks to foster interdisciplinary dialogue among students and researchers by using the sustainability sciences as a bridge concept. The purpose of this study is to explore the effectiveness of the SRS in fostering sustainability literacy. Design/methodology/approach Past participants of the SRS were invited to complete a survey to gauge the strengths and weaknesses of the symposia from a participants’ perspective. A mix of descriptive statistics and axial and thematic coding were used to analyze survey responses (n = 56). This study links theory and practice to explore the outcomes of symposia as tools for students to engage with sustainability research in university campuses. Findings Survey findings indicated that participants are from multiple disciplinary backgrounds and that they are often interested in sustainability research without being identified as sustainability researchers. Overall, the survey findings suggested that student-organized symposia can be effective mechanisms to enhance exposure to interdisciplinary research and to integrate sustainability sciences outside the classroom. Practical implications Despite being a one-day event, the survey findings suggest that symposia can offer an “initiation” toward interdisciplinary dialogue and around sustainability research that can have lasting impacts beyond the time frame of the event. Originality/value Although research symposia are widespread in university campuses, there is little published information on the effectiveness of student-organized symposia as vectors for sustainability literacy. This original contribution presents a case study of the effectiveness of an annual symposium at one Canadian university, organized by students from the Faculties of Science, Arts and Management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.