Objective This study assessed the effect of fluoride varnishes on the progression of tooth erosion in vitro. Material and Methods: Forty-eight enamel and 60 root dentin samples were previously demineralized (0.1% citric acid, pH 2.5, 30 min), leading to a baseline and erosive wear of 12.9 and 11.4 µm, respectively. The samples were randomly treated (6 h) with a 4% TiF4 varnish (2.45%F-, pH 1.0), a 5.42% NaF varnish (2.45%F-, pH 5.0), a placebo varnish and no varnish (control). The samples were then subjected to erosive pH cycles (4x90 s/day in 0.1% citric acid, intercalated with artificial saliva) for 5 days. The increment of the erosive tooth wear was calculated. In the case of dentin, this final measurement was done with and without the demineralized organic matrix (DOM). Enamel and dentin data were analyzed using ANOVA/Tukey’s and Kruskal-Wallis/Dunn tests, respectively (p<0.05).Results The TiF4 (mean±s.d: 1.5±1.1 µm) and NaF (2.1±1.7 µm) varnishes significantly reduced enamel wear progression compared to the placebo varnish (3.9±1.1 µm) and control (4.5±0.9 µm). The same differences were found for dentin in the presence and absence of the DOM, respectively: TiF4 (average: 0.97/1.87 µm), NaF (1.03/2.13 µm), placebo varnish (3.53/4.47 µm) and control (3.53/4.36 µm).Conclusion The TiF4 and NaF varnishes were equally effective in reducing the progression of tooth erosion in vitro.
The aim of this study was to compare the effect of toothpastes containing TiF4, NaF, and SnF2 on tooth erosion-abrasion. Bovine enamel and dentin specimens were distributed into 10 groups (n = 12): experimental placebo toothpaste (no F); NaF (1450 ppm F); TiF4 (1450 ppm F); SnF2 (1450 ppm F); SnF2 (1100 ppm F) + NaF (350 ppm F); TiF4 (1100 ppm F) + NaF (350 ppm F); commercial toothpaste Pro-Health (SnF2—1100 ppm F + NaF—350 ppm F, Oral B); commercial toothpaste Crest (NaF—1.500 ppm F, Procter & Gamble); abrasion without toothpaste and only erosion. The erosion was performed 4 × 90 s/day (Sprite Zero). The toothpastes' slurries were applied and the specimens abraded using an electric toothbrush 2 × 15 s/day. Between the erosive and abrasive challenges, the specimens remained in artificial saliva. After 7 days, the tooth wear was evaluated using contact profilometry (μm). The experimental toothpastes with NaF, TiF4, SnF2, and Pro-Health showed a significant reduction in enamel wear (between 42% and 54%). Pro-Health also significantly reduced the dentin wear. The toothpastes with SnF2/NaF and TiF4/NaF showed the best results in the reduction of enamel wear (62–70%) as well as TiF4, SnF2, SnF2/NaF, and TiF4/NaF for dentin wear (64–79%) (P < 0.05). Therefore, the experimental toothpastes containing both conventional and metal fluoride seem to be promising in reducing tooth wear.
Nd:YAG laser irradiation was not effective against enamel erosion and it did not have any influence on the efficacy of F, except for TiF(4) solution. On the other hand, TiF(4) varnish protected against enamel erosion, without the influence of laser irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.