The remarkable Hubble Space Telescope(HST) data sets from the CANDELS, HUDF09, HUDF12, ERS, and BoRG/HIPPIES programs have allowed us to map the evolution of the rest-frame UV luminosity function (LF) fromz 10 toz 4. We develop new color criteria that more optimally utilize the full wavelength coverage from the optical, near-IR, and mid-IR observations over our search fields, while simultaneously minimizing the incompleteness and eliminating redshift gaps. We have identified 5859, 3001, 857, 481, 217, and 6 galaxy candidates atz 4,z 5,z 6,z 7,z 8, andz 10, respectively, from the ∼1000 arcmin 2 area covered by these data sets. This sample of >10,000 galaxy candidates at ⩾ z 4 is by far the largest assembled to date with HST. The selection ofz 4-8 candidates over the five CANDELS fields allows us to assess the cosmic variance; the largest variations are at ⩾ z 7. Our new LF determinations atz 4 andz 5 span a 6 mag baseline and reach to -16 AB mag. These determinations agree well with previous estimates, but the larger samples and volumes probed here result in a more reliable sampling of >L* galaxies and allow us to reassess the form of the UV LFs. Our new LF results strengthen our earlier findings to s 3.4 significance for a steeper faint-end slope of the UV LF at > z 4, with α evolving from a = - 1.64 0.04 atz 4 to a = - 2.06 0.13 atz 7 (and a = - 2.02 0.23 atz 8), consistent with that expected from the evolution of the halo mass function. We find less evolution in the characteristic magnitude M * fromz 7 toz 4; the observed evolution in the LF is now largely represented by changes in f*. No evidence for a non-Schechter-like form to the z ∼ 4-8 LFs is found. A simple conditional LF model based on halo growth and evolution in the M/L ratio µ +z ( ( 1) ) 1.5 of halos provides a good representation of the observed evolution.
The Cluster Lensing And Supernova survey with Hubble (CLASH) is a 524-orbit multi-cycle treasury program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions. The survey, described in detail in this paper, will definitively establish the degree of concentration of dark matter in the cluster cores, a key prediction of structure formation models. The CLASH cluster sample is larger and less biased than current samples of space-based imaging studies of clusters to similar depth, as we have minimized lensing-based selection that favors systems with overly dense cores. Specifically, twenty CLASH clusters are solely X-ray selected. The X-ray selected clusters are massive (kT > 5 keV) and, in most cases, dynamically relaxed. Five additional clusters are included for their lensing strength (θ Ein > 35 at z s = 2) to optimize the likelihood of finding highly magnified high-z (z > 7) galaxies. A total of 16 broadband filters, spanning the near-UV to near-IR, are employed for each 20-orbit campaign on each cluster. These data are used to measure precise (σ z ∼ 0.02(1+z)) photometric redshifts for newly discovered arcs. Observations of each cluster are spread over 8 epochs to enable a search for Type Ia supernovae at z > 1 to improve constraints on the time dependence of the dark energy equation of state and the evolution of supernovae. We present newly re-derived X-ray luminosities, temperatures, and Fe abundances for the CLASH clusters as well as a representative source list for MACS1149.6+2223 (z = 0.544).
The Astropy Project supports and fosters the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community. A key element of the Astropy Project is the core package astropy, which serves as the foundation for more specialized projects and packages. In this article, we provide an overview of the organization of the Astropy project and summarize key features in the core package, as of the recent major release, version 2.0. We then describe the project infrastructure designed to facilitate and support development for a broader ecosystem of interoperable packages. We conclude with a future outlook of planned new features and directions for the broader Astropy Project.
We measure the morphology-density relation ( MDR) and morphology-radius relation (MRR) for galaxies in seven z $ 1 clusters that have been observed with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope. Simulations and independent comparisons of our visually derived morphologies indicate that ACS allows one to distinguish between E, S0, and spiral morphologies down to z 850 ¼ 24, corresponding to L /L Ã ¼ 0:21 and 0.30 at z ¼ 0:83 and 1.24, respectively. We adopt density and radius estimation methods that match those used at lower redshift in order to study the evolution of the MDR and MRR. We detect a change in the MDR between 0:8 < z < 1:2 and that observed at z $ 0, consistent with recent work; specifically, the growth in the bulge-dominated galaxy fraction, f EþS0 , with increasing density proceeds less rapidly at z $ 1 than it does at z $ 0. At z $ 1 and AE ! 500 galaxies Mpc À2 , we find h f EþS0 i ¼ 0:72 AE 0:10. At z $ 0, an E+S0 population fraction of this magnitude occurs at densities about 5 times smaller. The evolution in the MDR is confined to densities AE k 40 galaxies Mpc À2 and appears to be primarily due to a deficit of S0 galaxies and an excess of Sp+Irr galaxies relative to the local galaxy population. The f E -density relation exhibits no significant evolution between z ¼ 1 and 0. We find mild evidence to suggest that the MDR is dependent on the bolometric X-ray luminosity of the intracluster medium. Implications for the evolution of the disk galaxy population in dense regions are discussed in the context of these observations.
We present results from a comprehensive lensing analysis in HST data, of the complete Cluster Lensing And Supernova survey with Hubble (CLASH) cluster sample. We identify new multiple-images previously undiscovered, allowing improved or first constraints on the cluster inner mass distributions and profiles. We combine these strong-lensing constraints with weak-lensing shape measurements within the HST FOV to jointly constrain the mass distributions. The analysis is performed in two different common parameterizations (one adopts light-traces-mass for both galaxies and dark matter while the other adopts an analytical, elliptical NFW form for the dark matter), to provide a better assessment of the underlying systematics -which is most important for deep, cluster-lensing surveys, especially when studying magnified high-redshift objects. We find that the typical (median), relative systematic differences throughout the central FOV are ∼ 40% in the (dimensionless) mass density, κ, and ∼ 20% in the magnification, µ. We show maps of these differences for each cluster, as well as the mass distributions, critical curves, and 2D integrated mass profiles. For the Einstein radii (z s = 2) we find that all typically agree within 10% between the two models, and Einstein masses agree, typically, within ∼ 15%. At larger radii, the total projected, 2D integrated mass profiles of the two models, within r ∼ 2 , differ by ∼ 30%. Stacking the surface-density profiles of the sample from the two methods together, we obtain an average slope of d log(Σ)/d log(r) ∼ −0.64 ± 0.1, in the radial range [5,350] kpc. Lastly, we also characterize the behavior of the average magnification, surface density, and shear differences between the two models, as a function of both the radius from the center, and the best-fit values of these quantities. All mass models and magnification maps are made publicly available for the community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.