After 18 months as a research associate with Professor Gary Maciel at Colorado State University, he joined the faculty of Texas A&M University in 1984. His research interests include demanding applications of NMR spectroscopy to important problems in all areas of chemistry, especially reactive intermediates. Theoretical chemistry is a recent interest. John B. Nicholas was born in Hinsdale, IL, in 1954. After a career as a professional musician, he turned to the sciences. He received his B.S. in biochemistry from Illinois Benedictine College in 1986. He obtained his Ph.D. in physical chemistry from the University of Illinois at Chicago under the direction of Anton J. Hopfinger.
Hydrogen-bearing species in the bone mineral environment were investigated using solid-state NMR spectroscopy of powdered bone, deproteinated bone, and B-type carbonated apatite. Using magic-angle spinning and cross-polarization techniques three types of structurally-bound water were observed in these materials. Two of these water types occupy vacancies within the apatitic mineral crystal in synthetic carbonated apatite and deproteinated bone and serve to stabilize these defect-containing crystals. The third water was observed at the mineral surface in unmodified bone but not in deproteinated bone, suggesting a role for this water in mediating mineral-organic matrix interactions. Direct evidence of monohydrogen phosphate in a (1)H NMR spectrum of unmodified bone is presented for the first time. We obtained clear evidence for the presence of hydroxide ion in deproteinated bone by (1)H MAS NMR. A (1)H-(31)P heteronuclear correlation experiment provided unambiguous evidence for hydroxide ion in unmodified bone as well. Hydroxide ion in both unmodified and deproteinated bone mineral was found to participate in hydrogen bonding with neighboring water molecules and ions. In unmodified bone mineral hydroxide ion was found, through a (1)H-(31)P heteronuclear correlation experiment, to be confined to a small portion of the mineral crystal, probably the internal portion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.