Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
Radovits T, Oláh A, Lux Á, Németh BT, Hidi L, Birtalan E, Kellermayer D, Mátyás C, Szabó G, Merkely B. Rat model of exercise-induced cardiac hypertrophy: hemodynamic characterization using left ventricular pressure-volume analysis. Am J Physiol Heart Circ Physiol 305: H124 -H134, 2013. First published May 3, 2013 doi:10.1152/ajpheart.00108.2013.-Long-term exercise training is associated with characteristic structural and functional changes of the myocardium, termed athlete's heart. Several research groups investigated exercise training-induced left ventricular (LV) hypertrophy in animal models; however, only sporadic data exist about detailed hemodynamics. We aimed to provide functional characterization of exercise-induced cardiac hypertrophy in a rat model using the in vivo method of LV pressure-volume (P-V) analysis. After inducing LV hypertrophy by swim training, we assessed LV morphometry by echocardiography and performed LV P-V analysis using a pressureconductance microcatheter to investigate in vivo cardiac function. Echocardiography showed LV hypertrophy (LV mass index: 2.41 Ϯ 0.09 vs. 2.03 Ϯ 0.08 g/kg, P Ͻ 0.01), which was confirmed by heart weight data and histomorphometry. Invasive hemodynamic measurements showed unaltered heart rate, arterial pressure, and LV enddiastolic volume along with decreased LV end-systolic volume, thus increased stroke volume and ejection fraction (73.7 Ϯ 0.8 vs. 64.1 Ϯ 1.5%, P Ͻ 0.01) in trained versus untrained control rats. The P-V loop-derived sensitive, load-independent contractility indexes, such as slope of end-systolic P-V relationship or preload recruitable stroke work (77.0 Ϯ 6.8 vs. 54.3 Ϯ 4.8 mmHg, P ϭ 0.01) were found to be significantly increased. The observed improvement of ventriculoarterial coupling (0.37 Ϯ 0.02 vs. 0.65 Ϯ 0.08, P Ͻ 0.01), along with increased LV stroke work and mechanical efficiency, reflects improved mechanoenergetics of exercise-induced cardiac hypertrophy. Despite the significant hypertrophy, we observed unaltered LV stiffness (slope of end-diastolic P-V relationship: 0.043 Ϯ 0.007 vs. 0.040 Ϯ 0.006 mmHg/l) and improved LV active relaxation (: 10.1 Ϯ 0.6 vs. 11.9 Ϯ 0.2 ms, P Ͻ 0.01). According to our knowledge, this is the first study that provides characterization of functional changes and hemodynamic relations in exercise-induced cardiac hypertrophy.exercise-induced cardiac hypertrophy; pressure-volume analysis; systolic function; diastolic function; cardiac mechanoenergetics ATHLETE'S HEART HAS BEEN DESCRIBED as the complex structural, functional, and electrical cardiac remodeling induced by longterm exercise training (40). Exercise training-induced cardiac hypertrophy is an important physiological adaption, which includes balanced increase of left ventricular (LV) and left atrial diameters, cardiac mass, and LV wall thicknesses effected by myocyte hypertrophy and neoangiogenesis (10,12,25,36,37).Cardiac enlargement in athletes has been reported since the late 1890s (6), and several aspects of athlete's heart have been intensively inv...
Excessive physical activity has an adverse effect on the heart. The observed functional impairment is associated with increased nitro-oxidative stress, enhanced apoptotic signaling and dysregulation of the matrix metalloproteinase system after exhaustive exercise.
Highlights-Neutrophil extracellular traps (NETs) modify the structure and stability of fibrin.-NET content of thrombi varies at different locations (brain, heart, peripheral arteries).-DNA and histones in thrombi correlate with age and systemic inflammatory markers.-The amount of fibrin is similar at all examined arterial locations.-Thicker fibrin fibers are formed in coronaries than in brain and peripheral arteries. 3 Abstract Introduction-The ultrastructure and cellular composition of thrombi has a profound effect on the outcome of acute ischemic stroke (AIS), coronary (CAD) and peripheral artery disease (PAD). Activated neutrophils release a web-like structure composed mainly of DNA and citrullinated histones, called neutrophil extracellular traps (NET) that modify the stability and lysability of fibrin. Here, we investigated the NET-related structural features of thrombi retrieved from different arterial localizations and their interrelations with routinely available clinical data. Patients and methods-Thrombi extracted from AIS (n=78), CAD (n=66) or PAD (n=64) patients were processed for scanning electron microscopy, (immune)stained for fibrin, citrullinated histone H3 (cH3) and extracellular DNA. Fibrin fiber diameter, cellular components, DNA and cH3 were measured and analyzed in relation to clinical parameters. Results-DNA was least present in AIS thrombi showing a 2.5-fold lower DNA/fibrin ratio than PAD, whereas cH3 antigen was unvaryingly present at all locations. The NET content of thrombi correlated parabolically with systemic inflammatory markers and positively with patients' age. The median platelet content was lower in PAD (2.2%) than in either AIS (3.9%) or CAD (3.1%) and thrombi from smokers contained less platelets than non-smokers. Fibrin fibers were significantly thicker in male patients with CAD (median fiber diameter 76.3 nm) compared to AIS (64.1 nm) or PAD (62.1 nm) and their diameter correlated parabolically with systemic inflammatory markers.Conclusions-The observed NET-related variations in thrombus structure shed light on novel determinants of thrombus stability that eventually affect both the spontaneous progress and therapeutic outcome of ischemic arterial diseases.
SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30 days of surgery. SARS-CoV-2 diagnosis was defined as peri-operative (7 days before to 30 days after surgery); recent (1-6 weeks before surgery); previous (≥7 weeks before surgery); or none. Information on prophylaxis regimens or pre-operative anti-coagulation for baseline comorbidities was not available. Postoperative venous thromboembolism rate was 0.5% (666/123,591) in patients without SARS-CoV-2; 2.2% (50/2317) in patients with peri-operative SARS-CoV-2; 1.6% (15/953) in patients with recent SARS-CoV-2; and 1.0% (11/1148) in patients with previous SARS-CoV-2. After adjustment for confounding factors, patients with peri-operative (adjusted odds ratio 1.5 (95%CI 1.1-2.0)) and recent SARS-CoV-2 (1.9 (95%CI 1.2-3.3)) remained at higher risk of venous thromboembolism, with a borderline finding in previous SARS-CoV-2 (1.7 (95%CI 0.9-3.0)). Overall, venous thromboembolism was independently associated with 30-day mortality ). In patients with SARS-CoV-2, mortality without venous thromboembolism was 7.4% (319/4342) and with venous thromboembolism was 40.8% (31/76). Patients undergoing surgery with peri-operative or recent SARS-CoV-2 appear to be at increased risk of postoperative venous thromboembolism compared with patients with no history of SARS-CoV-2 infection. Optimal venous thromboembolism prophylaxis and treatment are unknown in this cohort of patients, and these data should be interpreted accordingly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.