Research on new reaction routes and precursors to prepare catalysts for CO 2 hydrogenation has enormous importance. Here, we report on the preparation of the permanganate salt of the urea-coordinated iron(III), [hexakis(urea- O )iron(III)]permanganate ([Fe(urea-O) 6 ](MnO 4 ) 3 ) via an affordable synthesis route and preliminarily demonstrate the catalytic activity of its (Fe,Mn)O x thermal decomposition products in CO 2 hydrogenation. [Fe(urea-O) 6 ](MnO 4 ) 3 contains O-coordinated urea ligands in octahedral propeller-like arrangement around the Fe 3+ cation. There are extended hydrogen bond interactions between the permanganate ions and the hydrogen atoms of the urea ligands. These hydrogen bonds serve as reaction centers and have unique roles in the solid-phase quasi-intramolecular redox reaction of the urea ligand and the permanganate anion below the temperature of ligand loss of the complex cation. The decomposition mechanism of the urea ligand (ammonia elimination with the formation of isocyanuric acid and biuret) has been clarified. In an inert atmosphere, the final thermal decomposition product was manganese-containing wuestite, (Fe,Mn)O, at 800 °C, whereas in ambient air, two types of bixbyite (Fe,Mn) 2 O 3 as well as jacobsite (Fe,Mn) T-4 (Fe,Mn) OC-6 2 O 4 ), with overall Fe to Mn stoichiometry of 1:3, were formed. These final products were obtained regardless of the different atmospheres applied during thermal treatments up to 350 °C. Disordered bixbyite formed first with inhomogeneous Fe and Mn distribution and double-size supercell and then transformed gradually into common bixbyite with regular structure (and with 1:3 Fe to Mn ratio) upon increasing the temperature and heating time. The (Fe,Mn)O x intermediates formed under various conditions showed catalytic effect in the CO 2 hydrogenation reaction with <57.6% CO 2 conversions and <39.3% hydrocarbon yields. As a mild solid-phase oxidant, hexakis(urea- O )iron(III) permanganate, was found to be selective in the transformation of (un)substituted benzylic alcohols into benzaldehydes and benzonitriles.
Anhydrous hexakis(urea-O)iron(III)]peroxydisulfate ([Fe(urea-O)6]2(S2O8)3 (compound 1), and its deuterated form were prepared and characterized with single-crystal X-ray diffraction and spectroscopic (IR, Raman, UV, and Mössbauer) methods. Six crystallographically different urea ligands coordinate via their oxygen in a propeller-like arrangement to iron(III) forming a distorted octahedral complex cation. The octahedral arrangement of the complex cation and its packing with two crystallographically different persulfate anions is stabilized by extended intramolecular (N–H⋯O = C) and intermolecular (N–H⋯O–S) hydrogen bonds. The two types of peroxydisulfate anions form different kinds and numbers of hydrogen bonds with the neighboring [hexakis(urea-O)6iron(III)]3+ cations. There are spectroscopically six kinds of urea and three kinds (2 + 1) of persulfate ions in compound 1, thus to distinguish the overlapping bands belonging to internal and external vibrational modes, deuteration of compound 1 and low-temperature Raman measurements were also carried out, and the bands belonging to the vibrational modes of urea and persulfate ions have been assigned. The thermal decomposition of compound 1 was followed by TG-MS and DSC methods in oxidative and inert atmospheres as well. The decomposition starts at 130 °C in inert atmosphere with oxidation of a small part of urea (~ 1 molecule), which supports the heat demand of the transformation of the remaining urea into ammonia and biuret/isocyanate. The next step of decomposition is the oxidation of ammonia into N2 along with the formation of SO2 (from sulfite). The main solid product proved to be (NH4)3Fe(SO4)3 in air. In inert atmosphere, some iron(II) compound also formed. The thermal decomposition of (NH4)3Fe(SO4)3 via NH4Fe(SO4)2 formation resulted in α-Fe2O3. The decomposition pathway of NH4Fe(SO4)2, however, depends on the experimental conditions. NH4Fe(SO4)2 transforms into Fe2(SO4)3, N2, H2O, and SO2 at 400 °C, thus the precursor of α-Fe2O3 is Fe2(SO4)3. Above 400 °C (at isotherm heating), however, the reduction of iron(III) centers was also observed. FeSO4 formed in 27 and 75% at 420 and 490 °C, respectively. FeSO4 also turns into α-Fe2O3 and SO2 on further heating. Graphical abstract
A compound having redox-active permanganate and complexed silver ions with reducing pyridine ligands is used as a mild organic and as a precursor for nanocatalyst synthesis in a low-temperature solid-phase quasi-intramolecular redox reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.