Singular potentials (the inverse-square potential, for example) arise in many situations and their quantum treatment leads to well-known ambiguities in choosing boundary conditions for the wave-function at the position of the potential's singularity. These ambiguities are usually resolved by developing a self-adjoint extension of the original problem; a non-unique procedure that leaves undetermined which extension should apply in specific physical systems. We take the guesswork out of this picture by using techniques of effective field theory to derive the required boundary conditions at the origin in terms of the effective point-particle action describing the physics of the source. In this picture ambiguities in boundary conditions boil down to the allowed choices for the source action, but casting them in terms of an action provides a physical criterion for their determination. The resulting extension is self-adjoint if the source action is real (and involves no new degrees of freedom), and not otherwise (as can also happen for reasonable systems). We show how this effective-field picture provides a simple framework for understanding well-known renormalization effects that arise in these systems, including how renormalization-group techniques can resum non-perturbative interactions that often arise, particularly for non-relativistic applications. In particular we argue why the low-energy effective theory tends to produce a universal RG flow of this type and describe how this can lead to the phenomenon of reaction catalysis, in which physical quantities (like scattering cross sections) can sometimes be surprisingly large compared to the underlying scales of the source in question. We comment in passing on the possible relevance of these observations to the phenomenon of the catalysis of baryon-number violation by scattering from magnetic monopoles.
We formulate point-particle effective field theory (PPEFT) for relativistic spinhalf fermions interacting with a massive, charged finite-sized source using a first-quantized effective field theory for the heavy compact object and a second-quantized language for the lighter fermion with which it interacts. This description shows how to determine the near-source boundary condition for the Dirac field in terms of the relevant physical properties of the source, and reduces to the standard choices in the limit of a point source. Using a first-quantized effective description is appropriate when the compact object is sufficiently heavy, and is simpler than (though equivalent to) the effective theory that treats the compact source in a second-quantized way. As an application we use the PPEFT to parameterize the leading energy shift for the bound energy levels due to finite-sized source effects in a model-independent way, allowing these effects to be fit in precision measurements. Besides capturing finite-source-size effects, the PPEFT treatment also efficiently captures how other short-distance source interactions can shift bound-state energy levels, such as due to vacuum polarization (through the Uehling potential) or strong interactions for Coulomb bound states of hadrons, or any hypothetical new short-range forces sourced by nuclei.
We apply point-particle effective field theory (PPEFT) to compute the leading shifts due to finite-sized source effects in the Coulomb bound energy levels of a relativistic spinless charged particle. This is the analogue for spinless electrons of calculating the contribution of the charge-radius of the source to these levels, and our calculation disagrees with standard calculations in several ways. Most notably we find there are two effective interactions with the same dimension that contribute to leading order in the nuclear size, one of which captures the standard charge-radius contribution. The other effective operator is a contact interaction whose leading contribution to δE arises linearly (rather than quadratically) in the small length scale, , characterizing the finite-size effects, and is suppressed by (Zα) 5 . We argue that standard calculations miss the contributions of this second operator because they err in their choice of boundary conditions at the source for the wave-function of the orbiting particle. PPEFT predicts how this boundary condition depends on the source's charge radius, as well as on the orbiting particle's mass. Its contribution turns out to be crucial if the charge radius satisfies (Zα) 2 a B , where a B is the Bohr radius, because then relativistic effects become important for the boundary condition. We show how the problem is equivalent to solving the Schrödinger equation with competing Coulomb, inverse-square and delta-function potentials, which we solve explicitly. A similar enhancement is not predicted for the hyperfine structure, due to its spin-dependence. We show how the charge-radius effectively runs due to classical renormalization effects, and why the resulting RG flow is central to predicting the size of the energy shifts (and is responsible for its being linear in the source size). We discuss how this flow is relevant to systems having much larger-than-geometric cross sections, such as those with large scattering lengths and perhaps also catalysis of reactions through scattering with monopoles. Experimental observation of these effects would require more precise measurement of energy levels for mesonic atoms than are now possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.