FadD is an acyl coenzyme A (CoA) synthetase responsible for the activation of exogenous long-chain fatty acids (LCFA) into acyl-CoAs. Mutation of fadD in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti promotes swarming motility and leads to defects in nodulation of alfalfa plants. In this study, we found that S. meliloti fadD mutants accumulated a mixture of free fatty acids during the stationary phase of growth. The composition of the free fatty acid pool and the results obtained after specific labeling of esterified fatty acids with a ⌬5-desaturase (⌬5-Des) were in agreement with membrane phospholipids being the origin of the released fatty acids. Escherichia coli fadD mutants also accumulated free fatty acids released from membrane lipids in the stationary phase. This phenomenon did not occur in a mutant of E. coli with a deficient FadL fatty acid transporter, suggesting that the accumulation of fatty acids in fadD mutants occurs inside the cell. Our results indicate that, besides the activation of exogenous LCFA, in bacteria FadD plays a major role in the activation of endogenous fatty acids released from membrane lipids. Furthermore, expression analysis performed with S. meliloti revealed that a functional FadD is required for the upregulation of genes involved in fatty acid degradation and suggested that in the wild-type strain, the fatty acids released from membrane lipids are degraded by -oxidation in the stationary phase of growth.
The hydroalcoholic extract of the steam bark of B. fagaroides var. fagaroides displayed potent cytotoxic activity against four cancer cell lines, namely KB (ED50 = 9.6 × 10−2 μg/mL), PC-3 (ED50 = 2.5 × 10−1 μg/mL), MCF-7 (ED50 = 6.6 μg/mL), and HF-6 (ED50 = 7.1 × 10−3 μg/mL). This extract also showed anti-tumour activity when assayed on mice inoculated with L5178Y lymphoma cells. Bioactivity-directed isolation of this extract, afforded seven podophyllotoxin-type lignans identified as podophyllotoxin (1), β-peltatin-A-methylether (2), 5′-desmethoxy-β-peltatin-A-methylether (3), desmethoxy-yatein (4), desoxypodophyllotoxin (5), burseranin (6), and acetyl podophyllotoxin (7) by 1D and 2DNMR and FAB-MS analyses, and comparison with reported values. All the isolated compounds showed potent cytotoxic activity in the cell lines tested, especially compound 3, which exhibited greater activity than camptothecin and podophyllotoxin against PC-3 (ED50 = 1.0 × 10−5 μg/mL), and KB (ED50 = 1.0 × 10−5 μg/mL). This is the first report of the isolation of podophyllotoxin and its acetate in a Bursera species.
Using bioactivity-directed isolation procedures, five new spirostan saponins and two sterol glycosides have been isolated from Solanum chrysotrichum leaves. The structure of these compounds was established based upon spectroscopic measurements, especially 1D and 2D NMR data of their peracetate derivatives. These compounds showed antimycotic activity. The most active compound is 6alpha-O-beta-d-xylopyranosyl-(1-->3)-beta-d-quinovopyranosyl-(25R)-5alpha-spirostan-3beta,23alpha-ol (2) (MIC =12.5, 12.5, 100, and 200 microg/mL against Trichophyton mentagrophytes, T. rubrum, Aspergillis niger, and Candida albicans, respectively).
Background
Bursera copallifera (Burseraceae) releases a resin known as “copal ancho” which has been used, since pre-Colombian times, as ceremonially burned incense and to treat tooth ache, tumors, arthritis, cold, cough, and various inflammatory conditions; however, its anti-inflammatory potential is poorly studied. The aim of the present study was to isolate, quantify, and to investigate the anti-inflammatory activity of triterpene compounds isolated from the copal resin of B. copallifera.MethodsThe constituents present in the total resin of B. copallifera were obtained by successive chromatographic procedures, and quantitative analysis was performed by High Performance Liquid Chromatography (HPLC). Anti-inflammatory effects of the isolated triterpenes were investigated to determine their inhibitory effects on phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced edema in mice, viability and nitric oxide (NO) production inhibition on lipopolysaccharide (LPS)-activated RAW 264.7 macrophages, and inhibition of cyclooxygenase (COX)-1, COX-2 and secretory Phospholipase A2 (sPLA2) activities in vitro.ResultsQuantitative phytochemical analysis of the copal resin showed the presence of six pentacyclic triterpenes of which, 3-epilupeol (59.75 % yield) and α-amyrin (21.1 % yield) are the most abundant. Among the isolated triterpenes, 3-epilupeol formiate (Inhibitory Concentration 50 % (IC50) = 0.96 μmol), α.amyrin acetate (IC50 = 1.17 μmol), lupenone (IC50 = 1.05 μmol), and 3-epilupeol (IC50 = 0.83 μmol) showed marked inhibition of the edema induced by TPA in mice. α-amyrin acetate and 3-epilupeol acetate, at 70 μM, also inhibited the activity of COX-2 by 62.85 and 73.28 % respectively, while α-amyrin and 3-epilupeol were the best inhibitors of the production of NO in LPS-activated RAW 264.7 cells with IC50 values of 15.5 and 8.98 μM respectively, and did not affected its viability. All compounds moderately inhibited the activity of PLA2.ConclusionsThis work supports the folk use of B. copallifera and provides the basis for future investigations about the therapeutic use of this resin in treating inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.