Restoration is considered an effective strategy to accelerate the recovery of biological communities at local scale. However, the effects of restoration actions in the marine ecosystems are still unpredictable. We performed a global analysis of published literature to identify the factors increasing the probability of restoration success in coastal and marine systems. Our results confirm that the majority of active restoration initiatives are still concentrated in the northern hemisphere and that most of information gathered from restoration efforts derives from a relatively small subset of species. The analysis also indicates that many studies are still experimental in nature, covering small spatial and temporal scales. Despite the limits of assessing restoration effectiveness in absence of a standardized definition of success, the context (degree of human impact, ecosystem type, habitat) of where the restoration activity is undertaken is of greater relevance to a successful outcome than how (method) the restoration is carried out. Contrary to expectations, we found that restoration is not necessarily more successful closer to protected areas (PA) and in areas of moderate human impact. This result can be motivated by the limits in assessing the success of interventions and by the tendency of selecting areas in more obvious need of restoration, where the potential of actively restoring a degraded site is more evident. Restoration sites prioritization considering human uses and conservation status present in the region is of vital importance to obtain the intended outcomes and galvanize further actions.
The analysis of 879 ROV dives carried out along the Italian coasts on hard substrata at mesophotic and upper bathyal depths (40-775 m) allowed us to evaluate the current basin-scale presence, relative abundance, bathymetric limits, and habitat preferences of one of the most charismatic Mediterranean habitat-former anthozoan species, Corallium rubrum (Linnaeus, 1758). The species is widespread, and its occurrence ranged from 13% of the explored sites in Ionian Calabria to a hotspot of approximately 80% in Sardinia. Population relative densities were generally low (< 10 colonies m-2), except along the Sardinian coasts and in some areas along the Apulian coast. Almost no red coral colonies were observed between 60 m and 590 m in the nine explored offshore seamounts in the Ligurian and Tyrrhenian Seas. A distinctive coastal distribution discontinuity was found in the Ionian Sea. The optimum bathymetric distribution was between 75 m and 125 m, and no colonies were found below 247 m. Red coral colonies showed a preference for biogenic habitats dominated by crustose coralline algae (CCA) and vertical substrata. The species was absent on iron wrecks. Corallium rubrum disappeared from 14% of the historical fishing banks, while it was confirmed in 86% of them, some of which have been deeply harvested in the past. In particular, the still flourishing Sardinian populations could be supported by the high reproductive potential and favourable hydrodynamic conditions in the area.
The current shift of fishery efforts towards the deep sea is raising concern about the vulnerability of deep-water sharks, which are often poorly studied and characterized by problematic taxonomy. For instance, in the Mediterranean Sea the taxonomy of genus Centrophorus has not been clearly unravelled yet. Since proper identification of the species is fundamental for their correct assessment and management, this study aims at clarifying the taxonomy of this genus in the Mediterranean Basin through an integrated taxonomic approach. We analysed a total of 281 gulper sharks (Centrophorus spp.) collected from various Mediterranean, Atlantic and Indian Ocean waters. Molecular data obtained from cytochrome c oxidase subunit I (COI), 16S ribosomal RNA (16S), NADH dehydrogenase subunit 2 (ND2) and a portion of a nuclear 28S ribosomal DNA gene region (28S) have highlighted the presence of a unique mitochondrial clade in the Mediterranean Sea. The morphometric results confirmed these findings, supporting the presence of a unique and distinct morphological group comprising all Mediterranean individuals. The data strongly indicate the occurrence of a single Centrophorus species in the Mediterranean, ascribable to C. cf. uyato, and suggest the need for a revision of the systematics of the genus in the area.
The present study, based on microsatellite markers, describes a population genetic analysis of the small-spotted catshark Scyliorhinus canicula (Linnaeus, 1758), representing one of the most abundant and commonly caught cartilaginous fishes in the Mediterranean Sea and adjacent areas. The analyses were performed to unravel the genetic features (variability, connectivity, sex-biased dispersal) of their relative geographic populations, both at the small (around the coast of Sardinia, Western Mediterranean Sea) and at a larger spatial scale (pan-Mediterranean level and between the Atlantic Ocean and the Mediterranean Sea). Individual clustering, multivariate and variance analyses rejected the hypothesis of genetic homogeneity, with significant genetic differences mainly within the Mediterranean between the Western and Eastern basins, as well as between the Mediterranean and the NE Atlantic Ocean. In detail, our results seem to confirm that the Strait of Gibraltar could not represent a complete barrier to the exchange of individuals of small-spotted catshark between the Atlantic Ocean and the Mediterranean Sea. In the latter area, a complex genetic structuring for S. canicula was found. Apart from differences among the Western, Eastern and Adriatic sites, within the Western basin the small-spotted catsharks around Sardinian waters are strongly differentiated from all others (both from the eastern Tyrrhenian Sea and southernmost part of the Algerian basin) and are demographically stable. Several possible mechanisms, both biological and abiotic (e.g., migratory behavior, waterfronts, and oceanographic discontinuities), are discussed here to explain their peculiar characteristics. Overall, the genetic data presented, both at the local and regional level, could represent a baseline information, useful for the temporal monitoring of populations, and to assess the effects of present or future fishing/management/conservation measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.