The prevalence of chronic kidney disease (CKD) is increasing and frequently progresses to end-stage renal disease. There is an urgent demand to discover novel markers of disease that allow monitoring disease progression and, eventually, response to treatment. To identify such markers, and as a proof of principle, we determined if a metabolite signature corresponding to CKD can be found in urine. In the discovery stage, we analyzed the urine metabolome by NMR of 15 patients with CKD and compared that with the metabolome of 15 healthy individuals and found a classification pattern clearly indicative of CKD. A validation cohort of urine samples from an additional 16 patients with CKD and 15 controls was then analyzed by (Selected Reaction Monitoring) liquid chromatography-triple quadrupole mass spectrometry and indicated that a group of seven urinary metabolites differed between CKD and non-CKD urine samples. This profile consisted of 5-oxoproline, glutamate, guanidoacetate, α-phenylacetylglutamine, taurine, citrate, and trimethylamine N-oxide. Thus, we identified a panel of urine metabolites differentially present in urine that may help identify and monitor patients with CKD.
We pursued here the identification of specific signatures of proteins and metabolites in urine which respond to atherosclerosis development, acute event and/or recovery. An animal model (rabbit) of atherosclerosis was developed and molecules responding to atherosclerosis silent development were identified. Those molecules were investigated in human urine from patients suffering an acute coronary syndrome (ACS), at onset and discharge. Kallikrein1 (KLK1) and zymogen granule protein16B (ZG16B) proteins, and l-alanine, l-arabitol, scyllo-inositol, 2-hydroxyphenilacetic acid, 3-hydroxybutyric acid and N-acetylneuraminic acid metabolites were found altered in response to atherosclerosis progression and the acute event, composing a molecular panel related to cardiovascular risk. KLK1 and ZG16B together with 3-hydroxybutyric acid, putrescine and 1-methylhydantoin responded at onset but also showed normalized levels at discharge, constituting a molecular panel to monitor recovery. The observed decreased of KLK1 is in alignment with the protective mechanism of the kallikrein–kinin system. The connection between KLK1 and ZG16B shown by pathway analysis explains reduced levels of toll-like receptor 2 described in atherosclerosis. Metabolomic analysis revealed arginine and proline metabolism, glutathione metabolism and degradation of ketone bodies as the three main pathways altered. In conclusion, two novel urinary panels of proteins and metabolites are here for the first time shown related to atherosclerosis, ACS and patient’s recovery.Electronic supplementary materialThe online version of this article (doi:10.1007/s11306-014-0761-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.