Prolonged exposure to drugs of abuse, such as cannabinoids and opioids, leads to pharmacological tolerance and receptor desensitization in the nervous system. Here we show that a similar form of functional antagonism is produced by sustained inactivation of monoacylglycerol lipase (MAGL), the principal degradative enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG). After repeated administration, the MAGL inhibitor JZL184 lost its analgesic activity and produced cross-tolerance to cannabinoid receptor (CB1) agonists in mice, effects that were phenocopied by genetic disruption of MAGL. Chronic MAGL blockade also caused physical dependence, impaired endocannabinoid-dependent synaptic plasticity, and desensitization of brain CB1 receptors. These data contrasted with blockade of fatty acid amide hydrolase (FAAH), an enzyme that degrades the other major endocannabinoid anandamide, which produced sustained analgesia without impairing CB1 receptors. Thus, individual endocannabinoids generate distinct analgesic profiles that are either sustained or transitory and associated with agonism and functional antagonism of the brain cannabinoid system, respectively.
⌬ 9 -Tetrahydrocannabinol (THC), the psychoactive component of marijuana, and other direct cannabinoid receptor (CB1) agonists produce a number of neurobehavioral effects in mammals that range from the beneficial (analgesia) to the untoward (abuse potential). Why, however, this full spectrum of activities is not observed upon pharmacological inhibition or genetic deletion of either fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), enzymes that regulate the two major endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), respectively, has remained unclear. Here, we describe a selective and efficacious dual FAAH/MAGL inhibitor, JZL195, and show that this agent exhibits broad activity in the tetrad test for CB1 agonism, causing analgesia, hypomotilty, and catalepsy. Comparison of JZL195 to specific FAAH and MAGL inhibitors identified behavioral processes that were regulated by a single endocannabinoid pathway (e.g., hypomotility by the 2-AG/MAGL pathway) and, interestingly, those where disruption of both FAAH and MAGL produced additive effects that were reversed by a CB1 antagonist. Falling into this latter category was drug discrimination behavior, where dual FAAH/MAGL blockade, but not disruption of either FAAH or MAGL alone, produced THC-like responses that were reversed by a CB1 antagonist. These data indicate that AEA and 2-AG signaling pathways interact to regulate specific behavioral processes in vivo, including those relevant to drug abuse, thus providing a potential mechanistic basis for the distinct pharmacological profiles of direct CB1 agonists and inhibitors of individual endocannabinoid degradative enzymes.hydrolase ͉ inhibitor ͉ metabolism N -arachidonoyl ethanolamine (anandamide or AEA) (1) and 2-arachidonoylglycerol (2-AG) (2, 3) are lipid transmitters that serve as endogenous ligands for the cannabinoid G-proteincoupled receptors CB1 and CB2. These lipids and receptors, along with the enzymes that biosynthesize and degrade AEA and 2-AG, form the endogenous cannabinoid (endocannabinoid) system, which regulates a diverse number of physiological processes in mammals, including pain, cognition, emotionality, neurodegeneration, feeding, and inflammation (4).CB1 and CB2 receptors are also activated by ⌬ 9 -tetrahydrocannabinol (THC), the psychoactive component of marijuana (4). Most of the neurobehavioral effects of THC and other direct cannabinoid receptor agonists are mediated by the CB1 receptor (5, 6), likely reflecting its widespread and abundant expression in the nervous system (7,8). CB1 agonism produces medicinally useful activities, such as analgesia, but also a number of undesirable side effects, including locomotor and cognitive impairments, as well as abuse liability. To date, it has proved difficult to uncouple these beneficial and untoward properties, thus limiting the therapeutic utility of direct CB1 agonists.Inhibitors of AEA and 2-AG degradation offer a potentially attractive alternative strategy to stimulate the endocannabinoid system (9-12). Indeed, d...
Regulators of G protein signaling (RGS) are a family of proteins known to accelerate termination of effector stimulation after G protein receptor activation. RGS9-2, a brain-specific splice variant of the RGS9 gene, is highly enriched in striatum and also expressed at much lower levels in periaqueductal gray and spinal cord, structures known to mediate various actions of morphine and other opiates. Morphine exerts its acute rewarding and analgesic effects by activation of inhibitory guanine nucleotide-binding regulatory protein-coupled opioid receptors, whereas chronic morphine causes addiction, tolerance to its acute analgesic effects, and profound physical dependence by sustained activation of these receptors. We show here that acute morphine administration increases expression of RGS9-2 in NAc and the other CNS regions, whereas chronic exposure decreases RGS9-2 levels. Mice lacking RGS9 show enhanced behavioral responses to acute and chronic morphine, including a dramatic increase in morphine reward, increased morphine analgesia with delayed tolerance, and exacerbated morphine physical dependence and withdrawal. These findings establish RGS9 as a potent negative modulator of opiate action in vivo, and suggest that opiate-induced changes in RGS9 levels contribute to the behavioral and neural plasticity associated with chronic opiate administration. R egulators of G protein signaling (RGS) share a 130-aa RGS (GTPase-activating) domain, which binds to the GTP-bound form of G␣i or G␣q and accelerates the termination of effector stimulation (1-3). RGS proteins are thereby thought to repress the signaling efficacy of receptors coupled to these G proteins. In addition, many of the 25 mammalian RGS proteins known to date contain domains that provide them with additional anchoring or scaffolding properties (4-6). Thus, the net effect of RGS proteins on G protein-coupled receptor signaling in vivo may be complicated and difficult to ascertain from in vitro studies alone.In brain, RGS proteins show distinct regional and cellular distributions (7). A prominent example is RGS9, which exists in two forms, RGS9-1 and RGS9-2, that are generated by alternative splicing (8, 9). These proteins differ at their C terminus only, with RGS9-1 containing 18 unique C-terminal amino acids and RGS9-2 containing 209 unique C-terminal amino acids. RGS9-1 is expressed solely in retina, where it is implicated in regulating phototransduction (9, 10). By contrast, RGS9-2 is expressed solely in brain, where it shows a distinctive pattern of expression in brain regions important for the actions of opiate drugs (7,8). RGS9-2 is highly enriched in striatum (including the ventral striatum or nucleus accumbens, NAc), a region important for opiate reward, but is also present at much lower levels in periaqueductal gray and spinal cord, structures important for opiate analgesia (11).We have demonstrated previously that RGS9-2 can negatively modulate opioid receptor function in cultured Xenopus melanophores in vitro (8,12). These findings, coupled with...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.