BACKGROUND
The Proteus syndrome is characterized by the overgrowth of skin, connective tissue, brain, and other tissues. It has been hypothesized that the syndrome is caused by somatic mosaicism for a mutation that is lethal in the nonmosaic state.
METHODS
We performed exome sequencing of DNA from biopsy samples obtained from patients with the Proteus syndrome and compared the resultant DNA sequences with those of unaffected tissues obtained from the same patients. We confirmed and extended an observed association, using a custom restriction-enzyme assay to analyze the DNA in 158 samples from 29 patients with the Proteus syndrome. We then assayed activation of the AKT protein in affected tissues, using phosphorylation-specific antibodies on Western blots.
RESULTS
Of 29 patients with the Proteus syndrome, 26 had a somatic activating mutation (c.49G→A, p.Glu17Lys) in the oncogene AKT1, encoding the AKT1 kinase, an enzyme known to mediate processes such as cell proliferation and apoptosis. Tissues and cell lines from patients with the Proteus syndrome harbored admixtures of mutant alleles that ranged from 1% to approximately 50%. Mutant cell lines showed greater AKT phosphorylation than did control cell lines. A pair of single-cell clones that were established from the same starting culture and differed with respect to their mutation status had different levels of AKT phosphorylation.
CONCLUSIONS
The Proteus syndrome is caused by a somatic activating mutation in AKT1, proving the hypothesis of somatic mosaicism and implicating activation of the PI3K–AKT pathway in the characteristic clinical findings of overgrowth and tumor susceptibility in this disorder. (Funded by the Intramural Research Program of the National Human Genome Research Institute.)
onset in infancy (SAVI), and another by additive loss-of-function mutations in proteasome genes causing the proteasome-associated autoinflammatory syndromes (PRAAS) (also, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperatures [CANDLE]), presented with chronically elevated interferon (IFN) signatures, suggesting a pathogenic role for type-I IFN in autoinflammatory diseases (2, 3). Type-I IFN was first discovered as a soluble antiviral factor over 50 years ago, and a role in sterile inflammation was proposed in patients with systemic lupus erythematosus (4). However, the discovery of genetic mutations that cause the autoinflammatory type-I interferonopathies CANDLE (2, 5), SAVI (3, 6-8), and Aicardi-Goutières syndrome (AGS) (9, 10) have shed light on pathomechanisms that drive chronic IFN signaling, and recent studies blocking IFN signaling validate a critical role for type-I IFNs (11). AGS-causing loss-of-function mutations in nucleases impair self-nucleic acid homeostasis, SAVI-causing
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.