Botulinum neurotoxins (BoNTs) inhibit cholinergic synaptic transmission by specifically cleaving proteins that are crucial for neurotransmitter exocytosis. Due to the lethality of these toxins, there are elevated concerns regarding their possible use as bioterrorism agents. Moreover, their widespread use for cosmetic purposes, and as medical treatments, has increased the potential risk of accidental overdosing and environmental exposure. Hence, there is an urgent need to develop novel modalities to counter BoNT intoxication. Mammalian motoneurons are the main target of BoNTs, however, due to the difficulty and poor efficiency of the procedures required to isolate the cells, they are not suitable for high-throughput drug screening assays. Here, we explored the suitability of embryonic stem (ES) cell-derived motoneurons as a renewable, reproducible, and physiologically relevant system for BoNT studies. We found that the sensitivity of ES-derived motoneurons to BoNT/A intoxication is comparable to that of primary mouse spinal motoneurons. Additionally, we demonstrated that several BoNT/A inhibitors protected SNAP-25, the BoNT/A substrate, in the ES-derived motoneuron system. Furthermore, this system is compatible with immunofluorescence-based high-throughput studies. These data suggest that ES-derived motoneurons provide a highly sensitive system that is amenable to large-scale screenings to rapidly identify and evaluate the biological efficacies of novel therapeutics.
A 1,7-bis(alkylamino)diazachrysene-based small molecule was previously identified as an inhibitor of the botulinum neurotoxin serotype A light chain metalloprotease. Subsequently, a variety of derivatives of this chemotype were synthesized to develop structure-activity relationships, and all are inhibitors of the BoNT/A LC. Three-dimensional analyses indicated that half of the originally discovered 1,7-DAAC structure superimposed well with 4-amino-7-chloroquinoline-based antimalarial agents. This observation led to the discovery that several of the 1,7-DAAC derivatives are potent in vitro inhibitors of Plasmodium falciparum, and in general, are more efficacious against CQ-resistant strains than against CQ-susceptible strains. In addition, by inhibiting β-hematin formation, the most efficacious 1,7-DAAC-based antimalarials employ a mechanism of action analogous to that of 4,7-ACQ-based antimalarials, and are well tolerated by normal cells. One candidate was also effective when administered orally in a rodent-based malaria model. Finally, the 1,7-DAAC-based derivatives were examined for Ebola filovirus inhibition in an assay employing Vero76 cells, and three provided promising antiviral activities and acceptably low toxicities.
Rift Valley fever is a potentially fatal disease of humans and domestic animals caused by Rift Valley fever virus (RVFV). Infection with RVFV in ruminants can cause near 100% abortion rates and recent outbreaks in naïve human populations have suggested case fatality rates of greater than thirty percent. To elucidate the roles that host proteins play during RVFV infection, proteomic analysis of RVFV virions was conducted using complementary analytical approaches, followed by functional validation studies of select identified host factors. Coupling the more traditional Gel LC/MS/MS approach (SDS PAGE followed by liquid chromatography tandem mass spectrometry) with an alternative technique that preserves protein complexes allowed the protein complement of these viral particles to be thoroughly examined. In addition to viral proteins present within the virions and virion-associated host proteins, multiple macromolecular complexes were identified. Bioinformatic analysis showed that host chaperones were among over-represented protein families associated with virions, and functional experiments using siRNA gene silencing and small molecule inhibitors identified several of these heat shock proteins, including heat shock protein 90 (HSP90), as important viral host factors. Further analysis indicated that HSP inhibition effects occur during the replication/transcription phase of the virus life cycle, leading to significant lowering of viral titers without compromising the functional capacity of released virions. Overall, these studies provide much needed further insight into interactions between RVFV and host cells, increasing our understanding of the infection process and suggesting novel strategies for anti-viral development. In particular, considering that several HSP90 inhibitors have been advancing through clinical trials for cancer treatment, these results also highlight the exciting potential of repurposing HSP90 inhibitors to treat RVF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.