During an infection the antigen non-specific memory CD8 T cell compartment is not simply an inert pool of cells, but becomes activated and cytotoxic. It is unknown how these cells contribute to the clearance of an infection. We measured the strength of T-cell receptor (TCR) signals that bystander activated, cytotoxic CD8 T-cells (BA-CTLs) receive in vivo and found evidence of limited TCR signaling. Given this marginal contribution of the TCR, we asked how BA-CTLs identify infected target cells. We show that target cells express NKG2D ligands following bacterial infection and demonstrate that BA-CTLs directly eliminate these target cells in an innate-like, NKG2D-dependent manner. Selective inhibition of BA-CTL mediated killing led to a significant defect in pathogen clearance. Together these data suggest a previously unappreciated, innate role for memory CD8 T-cells in the early immune response before the onset of a de-novo generated, antigen-specific CD8 T-cell response.
Chronic myeloid leukemia (CML) starts with the acquisition of a BCR-ABL fusion gene in a single hematopoietic stem cell, but the time to progression is unpredictable. Although the tyrosine kinase inhibitor imatinib mesylate is highly effective in the treatment of CML, its continuous administration is associated with development of resistance, particularly in advanced phase or blast crisis. We investigate here whether a feature of disease progression (i.e., elevated expression of Bcr-Abl in CD34 + progenitor cells from CML patients in blast crisis) has any bearing on the kinetics of resistance to imatinib. By studying cell lines that exogenously express Bcr-Abl over the range found from chronic phase to blast crisis of CML, we show that cells expressing high amounts of Bcr-Abl, as in blast crisis, are much less sensitive to imatinib and, more significantly, take a substantially shorter time for yielding a mutant subclone resistant to the inhibitor than cells with low expression levels, as in chronic phase. Our data suggest that the differential levels of the Bcr-Abl oncoprotein expressed by CD34 + CML cells may reflect the extent and duration of their response to imatinib; the relatively high levels of oncoprotein in advanced-phase disease may underlie the observed rapid development of resistance.
The MLL-AF9 oncogene -one of the most frequent MLL/HRX/ALL-1 rearrangements found in infantile and therapy-related leukaemias -originates from t(9;11) (p22;q23) and is mainly associated with monocytic acute myeloid leukaemia (AML-M5; FAB-classification). Here, we investigated the MLL-AF9 function by means of an antisense phosphorothioate-oligodeoxyribonucleotide (MLL-AF9-PS-ODNas) using the THP-1 AML-M5 cell line carrying t(9;11). Having confirmed that MLL-AF9-PS-ODNas induces strong inhibition of THP-1 cell growth, but only a moderate increase in apoptosis, we found that MLL-AF9-PS-ODNas did not induce morphofunctional terminal differentiation or restore M-CSF-, G-CSF-or GM-CSF-induced differentiation. Moreover, THP-1 cells showed the same phenotype with/without MLL-AF9-PS-ODNas. In THP-1 cells differentiated to mature macrophage-like cells by PMA/TPA or ATRA, MLL-AF9 expression was downregulated. Thus, in the monocytic lineage, MLL-AF9 may be expressed only in early phases and can induce deregulated amplification in both nonmalignant and malignant cells, maintaining the monocytic phenotype without blocking final maturation. Our findings suggest that: (1) as well as directly promoting cell growth, MLL-AF9 may also indirectly determine phenotype; (2) other leukaemogenic mutations associated with MLL-AF9-related leukaemias should be searched for mainly in processes of resistance to apoptosis (where MLL-AF9 may play only a limited role) and differentiation blockage (where MLL-AF9 may play no role).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.