BackgroundIntravaginal rings (IVRs) for HIV pre-exposure prophylaxis (PrEP) theoretically overcome some adherence concerns associated with frequent dosing that can occur with oral or vaginal film/gel regimens. An innovative pod-IVR, composed of an elastomer scaffold that can hold up to 10 polymer-coated drug cores (or “pods”), is distinct from other IVR designs as drug release from each pod can be controlled independently. A pod-IVR has been developed for the delivery of tenofovir (TFV) disoproxil fumarate (TDF) in combination with emtricitabine (FTC), as daily oral TDF-FTC is the only Food and Drug Administration (FDA)-approved regimen for HIV PrEP. A triple combination IVR building on this platform and delivering TDF-FTC along with the antiretroviral (ARV) agent maraviroc (MVC) also is under development.Methodology and findingsThis pilot Phase I trial conducted between June 23, 2015, and July 15, 2016, evaluated the safety, pharmacokinetics (PKs), and acceptability of pod-IVRs delivering 3 different ARV regimens: 1) TDF only, 2) TDF-FTC, and 3) TDF-FTC-MVC over 7 d. The crossover, open-label portion of the trial (N = 6) consisted of 7 d of continuous TDF pod-IVR use, a wash-out phase, and 7 d of continuous TDF-FTC pod-IVR use. After a 3-mo pause to evaluate safety and PK of the TDF and TDF-FTC pod-IVRs, TDF-FTC-MVC pod-IVRs (N = 6) were evaluated over 7 d of continuous use. Safety was assessed by adverse events (AEs), colposcopy, and culture-independent analysis of the vaginal microbiome (VMB). Drug and drug metabolite concentrations in plasma, cervicovaginal fluids (CVFs), cervicovaginal lavages (CVLs), and vaginal tissue (VT) biopsies were determined via liquid chromatographic-tandem mass spectrometry (LC-MS/MS). Perceptibility and acceptability were assessed by surveys and interviews. Median participant age was as follows: TDF/TDF-FTC group, 26 y (range 24–35 y), 2 White, 2 Hispanic, and 2 African American; TDF-FTC-MVC group, 24.5 y (range 21–41 y), 3 White, 1 Hispanic, and 2 African American. Reported acceptability was high for all 3 products, and pod-IVR use was confirmed by residual drug levels in used IVRs. There were no serious adverse events (SAEs) during the study. There were 26 AEs reported during TDF/TDF-FTC IVR use (itching, discharge, discomfort), with no differences between TDF alone or in combination with FTC observed. In the TDF-FTC-MVC IVR group, there were 12 AEs (itching, discharge, discomfort) during IVR use regardless of attribution to study product. No epithelial disruption/thinning was seen by colposcopy, and no systematic VMB shifts were observed. Median (IQR) tenofovir diphosphate (TFV-DP) tissue concentrations of 303 (277–938) fmol/106 cells (TDF), 289 (110–603) fmol/106 cells (TDF-FTC), and 302 (177.1–823.8) fmol/106 cells (TDF-FTC-MVC) were sustained for 7 d, exceeding theoretical target concentrations for vaginal HIV prevention. The study’s main limitations include the small sample size, short duration (7 d versus 28 d), and the lack of FTC triphosphate measurements in VT biopsies....
Background The Maryland Clinical Simulation Resource Consortium (MCSRC) was funded to increase the quality and quantity of simulation used in nursing education. Problem Schools of nursing are substituting simulation for clinical experience without requisite knowledge of simulation pedagogy. Approach The MCSRC developed a statewide curriculum model for a 3-day train-the-trainer program framed in theory and grounded in evidence. The program teaches nurse educators across 3 levels: novice, competent, and expert. Outcomes The evaluation plan was developed using Kirkpatrick's 4 levels to measure outcomes of the program. Self-confidence, satisfaction, knowledge, and behavioral changes have been realized. Nurse educators are now using theory, standards, and guidelines when conducting simulation-based experiences. Conclusions The curriculum model has proved effective in increasing the quality and quantity of simulation used in educating Maryland's nurses. To date, 154 nurse educators have participated in the train-the-trainer program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.