Summary Background Patients admitted to hospital can acquire multidrug-resistant organisms and Clostridium difficile from inadequately disinfected environmental surfaces. We determined the effect of three enhanced strategies for terminal room disinfection (disinfection of a room between occupying patients) on acquisition and infection due to meticillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, C difficile, and multidrug-resistant Acinetobacter. Methods We did a pragmatic, cluster-randomised, crossover trial at nine hospitals in the southeastern USA. Rooms from which a patient with infection or colonisation with a target organism was discharged were terminally disinfected with one of four strategies: reference (quaternary ammonium disinfectant except for C difficile, for which bleach was used); UV (quaternary ammonium disinfectant and disinfecting ultraviolet [UV-C] light except for C difficile, for which bleach and UV-C were used); bleach; and bleach and UV-C. The next patient admitted to the targeted room was considered exposed. Every strategy was used at each hospital in four consecutive 7-month periods. We randomly assigned the sequence of strategies for each hospital (1:1:1:1). The primary outcomes were the incidence of infection or colonisation with all target organisms among exposed patients and the incidence of C difficile infection among exposed patients in the intention-to-treat population. This trial is registered with ClinicalTrials.gov, NCT01579370. Findings 31 226 patients were exposed; 21 395 (69%) met all inclusion criteria, including 4916 in the reference group, 5178 in the UV group, 5438 in the bleach group, and 5863 in the bleach and UV group. 115 patients had the primary outcome during 22 426 exposure days in the reference group (51·3 per 10 000 exposure days). The incidence of target organisms among exposed patients was significantly lower after adding UV to standard cleaning strategies (n=76; 33·9 cases per 10 000 exposure days; relative risk [RR] 0·70, 95% CI 0·50–0·98; p=0·036). The primary outcome was not statistically lower with bleach (n=101; 41·6 cases per 10 000 exposure days; RR 0·85, 95% CI 0·69–1·04; p=0·116), or bleach and UV (n=131; 45·6 cases per 10 000 exposure days; RR 0·91, 95% CI 0·76–1·09; p=0·303) among exposed patients. Similarly, the incidence of C difficile infection among exposed patients was not changed after adding UV to cleaning with bleach (n=38 vs 36; 30·4 cases vs 31·6 cases per 10 000 exposure days; RR 1·0, 95% CI 0·57–1·75; p=0·997). Interpretation A contaminated health-care environment is an important source for acquisition of pathogens; enhanced terminal room disinfection decreases this risk. Funding US Centers for Disease Control and Prevention.
Summary Background The hospital environment is a source of pathogen transmission. The effect of enhanced disinfection strategies on the hospital-wide incidence of infection has not been investigated in a multicentre, randomised controlled trial. We aimed to assess the effectiveness of four disinfection strategies on hospital-wide incidence of multidrug-resistant organisms and Clostridium difficile in the Benefits of Enhanced Terminal Room (BETR) Disinfection study. Methods We did a prespecified secondary analysis of the results from the BETR Disinfection study, a pragmatic, multicentre, crossover cluster-randomised trial that assessed four different strategies for terminal room disinfection in nine hospitals in the southeastern USA. Rooms from which a patient with a specific infection or colonisation (due to the target organisms C difficile, meticillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci (VRE), or multidrug-resistant Acinetobacter spp) was discharged were terminally disinfected with one of four strategies: standard disinfection (quaternary ammonium disinfectant, except for C difficile, for which 10% hypochlorite [bleach] was used; reference); standard disinfection and disinfecting ultraviolet light (UV-C), except for C difficile, for which bleach and UV-C was used (UV strategy); 10% hypochlorite (bleach strategy); and bleach and UV-C (bleach and UV strategy). We randomly assigned the sequence of strategies for each hospital (1:1:1:1), and each strategy was used for 7 months, including a 1-month wash-in period and 6 months of data collection. The prespecified secondary outcomes were hospital-wide, hospital-acquired incidence of all target organisms (calculated as number of patients with hospital-acquired infection with a target organism per 10 000 patient days), and hospital-wide, hospital-acquired incidence of each target organism separately. BETR Disinfection is registered with ClinicalTrials.gov, number . Findings Between April, 2012, and July, 2014, there were 271 740 unique patients with 375 918 admissions. 314 610 admissions met all inclusion criteria (n=73 071 in the reference study period, n=81 621 in the UV study period, n=78 760 in the bleach study period, and n=81 158 in the bleach and UV study period). 2681 incidenct cases of hospital-acquired infection or colonisation occurred during the study. There was no significant difference in the hospital-wide risk of target organism acquisition between standard disinfection and the three enhanced terminal disinfection strategies for all target multidrug-resistant organisms (UV study period relative risk [RR] 0.89, 95% CI 0.79–1.00; p=0.052; bleach study period 0.92, 0.79–1.08; p=0.32; bleach and UV study period 0.99, 0.89–1.11; p=0.89). The decrease in risk in the UV study period was driven by decreases in risk of acquisition of C difficile (RR 0.89, 95% CI 0.80–0.99; p=0.031) and VRE (0.56, 0.31–0.996; p=0.048). Interpretation Enhanced terminal room disinfection with UV in a targeted subset of high-risk rooms led to a decr...
In this prospective study, we monitored 4 epidemiologically important pathogens (EIPs): methicillin-resistane Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), Clostridium difficile, and multidrug-resistant (MDR) Acinetobacter to assess the effectiveness of 3 enhanced disinfection strategies for terminal room disinfection against standard practice. Our data demonstrated that a decrease in room contamination with EIPs of 94% was associated with a 35% decrease in subsequent patient colonization and/or infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.