By taking up serotonin (5-hydroxytryptamine, 5-HT) released in the extracellular space, the 5-HT transporter (5-HTT) regulates central 5-HT neurotransmission. Possible adaptive changes in 5-HT neurotransmission in knock-out mice that do not express the 5-HT transporter were investigated with special focus on 5-HT1A and 5-HT1B receptors. Specific labelling with radioligands and antibodies, and competitive RT-PCR, showed that 5-HT1A receptor protein and mRNA levels were significantly decreased in the dorsal raphe nucleus (DRN), increased in the hippocampus and unchanged in other forebrain areas of 5-HTT-/- vs. 5-HTT+/+ mice. Such regional differences also concerned 5-HT1B receptors because a decrease in their density was found in the substantia nigra (-30%) but not the globus pallidus of mutant mice. Intermediate changes were noted in 5-HTT+/- mice compared with 5-HTT+/+ and 5-HTT-/- animals. Quantification of [35S]GTP-gamma-S binding evoked by potent 5-HT1 receptor agonists confirmed such changes as a decrease in this parameter was noted in the DRN (-66%) and the substantia nigra (-30%) but not other brain areas in 5-HTT-/- vs. 5-HTT+/+ mice. As expected from actions mediated by functional 5-HT1A and 5-HT1B autoreceptors, a decrease in brain 5-HT turnover rate after i.p. administration of ipsapirone (a 5-HT1A agonist), and an increased 5-HT outflow in the substantia nigra upon local application of GR 127935 (a 5-HT1B/1D antagonist) were observed in 5-HTT+/+ mice. Such effects were not detected in 5-HTT-/- mice, further confirming the occurrence of marked alterations of 5-HT1A and 5-HT1B autoreceptors in these animals.
Three different subtypes of Hϩ -dependent carriers (named VGLUT1-3) concentrate glutamate into synaptic vesicles before its exocytotic release. Neurons using other neurotransmitter than glutamate (such as cholinergic striatal interneurons and 5-HT neurons) express VGLUT3. It was recently reported that VGLUT3 increases acetylcholine vesicular filling, thereby, stimulating cholinergic transmission. This new regulatory mechanism is herein designated as vesicular-filling synergy (or vesicular synergy). In the present report, we found that deletion of VGLUT3 increased several anxiety-related behaviors in adult and in newborn mice as early as 8 d after birth. This precocious involvement of a vesicular glutamate transporter in anxiety led us to examine the underlying functional implications of VGLUT3 in 5-HT neurons. On one hand, VGLUT3 deletion caused a significant decrease of 5-HT 1A -mediated neurotransmission in raphe nuclei. On the other hand, VGLUT3 positively modulated 5-HT transmission of a specific subset of 5-HT terminals from the hippocampus and the cerebral cortex. VGLUT3-and VMAT2-positive serotonergic fibers show little or no 5-HT reuptake transporter. These results unravel the existence of a novel subset of 5-HT terminals in limbic areas that might play a crucial role in anxiety-like behaviors. In summary, VGLUT3 accelerates 5-HT transmission at the level of specific 5-HT terminals and can exert an inhibitory control at the raphe level. Furthermore, our results suggest that the loss of VGLUT3 expression leads to anxiety-associated behaviors and should be considered as a potential new target for the treatment of this disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.