Antiviral immunity in Drosophila involves RNA interference and poorly characterized inducible responses. Here, we showed that two components of the IMD pathway, the kinase dIKKβ and the transcription factor Relish, were required to control infection by two picorna-like viruses. We identified a set of genes induced by viral infection and regulated by dIKKβ and Relish, which included an ortholog of STING. We showed that dSTING participated in the control of infection by picorna-like viruses, acting upstream of dIKKβ to regulate expression of Nazo, an antiviral factor. Our data reveal an antiviral function for STING in an animal model devoid of interferons and suggest an evolutionarily ancient role for this molecule in antiviral immunity.
The rat parvovirus H-1 (H-1PV) attracts high attention as an anticancer agent, because it is not pathogenic for humans and has oncotropic and oncosuppressive properties. The viral nonstructural NS1 protein is thought to mediate H-1PV cytotoxicity, but its exact contribution to this process remains undefined. In this study, we analyzed the effects of the H-1PV NS1 protein on human cell proliferation and cell viability. We show that NS1 expression is sufficient to induce the accumulation of cells in G 2 phase, apoptosis via caspase 9 and 3 activation, and cell lysis. Similarly, cells infected with wild-type H-1PV arrest in G 2 phase and undergo apoptosis. Furthermore, we also show that both expression of NS1 and H-1PV infection lead to higher levels of intracellular reactive oxygen species (ROS), associated with DNA double-strand breaks. Antioxidant treatment reduces ROS levels and strongly decreases NS1-and virus-induced DNA damage, cell cycle arrest, and apoptosis, indicating that NS1-induced ROS are important mediators of H-1PV cytotoxicity.
Viruses are obligatory intracellular parasites that suffer strong evolutionary pressure from the host immune system. Rapidly evolving viral genomes can adapt to this pressure by acquiring genes that counteract host defense mechanisms. For example, many vertebrate DNA viruses have hijacked cellular genes encoding cytokines or cytokine receptors to disrupt host cell communication. Insect viruses express suppressors of RNA interference or apoptosis, highlighting the importance of these cell intrinsic antiviral mechanisms in invertebrates. Here, we report the identification and characterization of a family of proteins encoded by insect DNA viruses that are homologous to a 12-kDa circulating protein encoded by the virus-induced Drosophila gene diedel (die). We show that die mutant flies have shortened lifespan and succumb more rapidly than controls when infected with Sindbis virus. This reduced viability is associated with deregulated activation of the immune deficiency (IMD) pathway of host defense and can be rescued by mutations in the genes encoding the homolog of IKKγ or IMD itself. Our results reveal an endogenous pathway that is exploited by insect viruses to modulate NF-κB signaling and promote fly survival during the antiviral response.
Drosophila C virus (DCV) is a positive-sense RNA virus belonging to the Dicistroviridae family. This natural pathogen of the model organism Drosophila melanogaster is commonly used to investigate antiviral host defense in flies, which involves both RNA interference and inducible responses. Although lethality is used routinely as a readout for the efficiency of the antiviral immune response in these studies, virus-induced pathologies in flies still are poorly understood. Here, we characterize the pathogenesis associated with systemic DCV infection. Comparison of the transcriptome of flies infected with DCV or two other positive-sense RNA viruses, Flock House virus and Sindbis virus, reveals that DCV infection, unlike those of the other two viruses, represses the expression of a large number of genes. Several of these genes are expressed specifically in the midgut and also are repressed by starvation. We show that systemic DCV infection triggers a nutritional stress in Drosophila which results from intestinal obstruction with the accumulation of peritrophic matrix at the entry of the midgut and the accumulation of the food ingested in the crop, a blind muscular food storage organ. The related virus cricket paralysis virus (CrPV), which efficiently grows in Drosophila, does not trigger this pathology. We show that DCV, but not CrPV, infects the smooth muscles surrounding the crop, causing extensive cytopathology and strongly reducing the rate of contractions. We conclude that the pathogenesis associated with systemic DCV infection results from the tropism of the virus for an important organ within the foregut of dipteran insects, the crop. IMPORTANCEDCV is one of the few identified natural viral pathogens affecting the model organism Drosophila melanogaster. As such, it is an important virus for the deciphering of host-virus interactions in insects. We characterize here the pathogenesis associated with DCV infection in flies and show that it results from the tropism of the virus for an essential but poorly characterized organ in the digestive tract, the crop. Our results may have relevance for other members of the Dicistroviridae, some of which are pathogenic to beneficial or pest insect species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.