We theoretically and experimentally evidence that fiber systems are convective systems since their nonlocal inherent properties, such as the dispersion and Raman effects, break the reflection symmetry. Theoretical analysis and numerical simulations carried out for a fiber ring cavity demonstrate that the third-order dispersion term leads to the appearance of convective and absolute instabilities. Their signature is an asymmetry in the output power spectrum. Using this criterion, experimental evidence of convective instabilities is given in a fiber cavity pumped by a pulsed laser.
Here we report successful interferometric coupling of two large telescopes with single-mode fibers. Interference fringes were obtained in the 2- to 2.3-micrometer wavelength range on the star 107 Herculis by using the two Keck 10-meter telescopes, each feeding their common interferometric focus with 300 meters of single-mode fibers. This experiment demonstrates the potential of fibers for future kilometric arrays of telescopes and is the first step toward the 'OHANA (Optical Hawaiian Array for Nanoradian Astronomy) interferometer at the Mauna Kea observatory in Hawaii. It opens the way to sensitive optical imagers with resolutions below 1 milli-arc second. Our experimental setup can be directly extended to large telescopes separated by many hundreds of meters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.