Chlorine ligands in a variety of diamagnetic transition-metal (TM) complexes in common structural motifs were studied using (35)Cl solid-state NMR (SSNMR), and insight into the origin of the observed (35)Cl NMR parameters was gained through first-principles density functional theory (DFT) calculations. The WURST-CPMG pulse sequence and the variable-offset cumulative spectrum (VOCS) methods were used to acquire static (35)Cl SSNMR powder patterns at both standard (9.4 T) and ultrahigh (21.1 T) magnetic field strengths, with the latter affording higher signal-to-noise ratios (S/N) and reduced experimental times (i.e., <1 h). Analytical simulations were performed to extract the (35)Cl electric field gradient (EFG) tensor and chemical shift (CS) tensor parameters. It was found that the chlorine ligands in various bonding environments (i.e., bridging, terminal-axial, and terminal-equatorial) have drastically different (35)Cl EFG tensor parameters, suggesting that (35)Cl SSNMR is ideal for characterizing chlorine ligands in TM complexes. A detailed localized molecular orbital (LMO) analysis was completed for NbCl5. It was found that the contributions of individual molecular orbitals must be considered to fully explain the observed EFG parameters, thereby negating simple arguments based on comparison of bond lengths and angles. Finally, we discuss the application of (35)Cl SSNMR for the structural characterization of WCl6 that has been grafted onto a silica support material. The resulting tungsten-chloride surface species is shown to be structurally distinct from the parent compound.
The surface hydroxyl groups of γ-alumina dehydroxylated at 500 °C were studied by a combination of one- and two-dimensional homo- and heteronuclear (1)H and (27)Al NMR spectroscopy at high magnetic field. In particular, by harnessing (1)H-(27) Al dipolar interactions, a high selectivity was achieved in unveiling the topology of the alumina surface. The terminal versus bridging character of the hydroxyl groups observed in the (1)H magic-angle spinning (MAS) NMR spectrum was demonstrated thanks to (1)H-(27) Al RESPDOR (resonance-echo saturation-pulse double-resonance). In a further step the hydroxyl groups were assigned to their aluminium neighbours thanks to a {(1)H}-(27) Al dipolar heteronuclear multiple quantum correlation (D-HMQC), which was used to establish a first coordination map. Then, in combination with (1)H-(1) H double quantum (DQ) MAS, these elements helped to reveal intimate structural features of the surface hydroxyls. Finally, the nature of a peculiar reactive hydroxyl group was demonstrated following this methodology in the case of CO2 reactivity with alumina.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.